Well-posedness for a class of phase-field systems modeling prostate cancer growth with fractional operators and general nonlinearities
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2832 | |
dc.contributor.author | Colli, Pierluigi | |
dc.contributor.author | Gilardi, Gianni | |
dc.contributor.author | Sprekels, Jürgen | |
dc.date.accessioned | 2022-07-05T14:00:04Z | |
dc.date.available | 2022-07-05T14:00:04Z | |
dc.date.issued | 2021 | |
dc.description.abstract | This paper deals with a general system of equations and conditions arising from a mathematical model of prostate cancer growth with chemotherapy and antiangiogenic therapy that has been recently introduced and analyzed (see [P. Colli et al., Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects, Math. Models Methods Appl. Sci. bf 30 (2020), 1253--1295]). The related system includes two evolutionary operator equations involving fractional powers of selfadjoint, nonnegative, unbounded linear operators having compact resolvents. Both equations contain nonlinearities and in particular the equation describing the dynamics of the tumor phase variable has the structure of a Allen--Cahn equation with double-well potential and additional nonlinearity depending also on the other variable, which represents the nutrient concentration. The equation for the nutrient concentration is nonlinear as well, with a term coupling both variables. For this system we design an existence, uniqueness and continuous dependence theory by setting up a careful analysis which allows the consideration of nonsmooth potentials and the treatment of continuous nonlinearities with general growth properties. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9550 | |
dc.identifier.uri | https://doi.org/10.34657/8588 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2832 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Phase-field model | eng |
dc.subject.other | fractional operators | eng |
dc.subject.other | semilinear parabolic system | eng |
dc.subject.other | well-posedness | eng |
dc.subject.other | prostate tumor growth | eng |
dc.title | Well-posedness for a class of phase-field systems modeling prostate cancer growth with fractional operators and general nonlinearities | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 27 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2832.pdf
- Size:
- 326.33 KB
- Format:
- Adobe Portable Document Format
- Description: