Regular polynomial interpolation and approximation of global solutions of linear partial differential equations
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We consider regular polynomial interpolation algorithms on recursively defined sets of interpolation points which approximate global solutions of arbitrary well-posed systems of linear partial differential equations. Convergence of the "limit" of the recursively constructed family of polynomials to the solution and error estimates are obtained from a priori estimates for some standard classes of linear partial differential equations, i.e. elliptic and hyperbolic equations. Another variation of the algorithm allows to construct polynomial interpolations which preserve systems of linear partial differential equations at the interpolation points. We show how this can be applied in order to compute higher order terms of WKB-approximations of fundamental solutions of a large class of linear parabolic equations. The error estimates are sensitive to the regularity of the solution. Our method is compatible with recent developments for solution of higher dimensional partial differential equations, i.e. (adaptive) sparse grids, and weighted Monte-Carlo, and has obvious applications to mathematical finance and physics.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.