Adaptive stochastic Galerkin FEM with hierarchical tensor representations

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2153
dc.contributor.authorEigel, Martin
dc.contributor.authorPfeffer, Max
dc.contributor.authorSchneider, Reinhold
dc.date.accessioned2016-12-13T10:46:44Z
dc.date.available2019-06-28T08:24:12Z
dc.date.issued2015
dc.description.abstractThe solution of PDE with stochastic data commonly leads to very high-dimensional algebraic problems, e.g. when multiplicative noise is present. The Stochastic Galerkin FEM considered in this paper then suffers from the curse of dimensionality. This is directly related to the number of random variables required for an adequate representation of the random fields included in the PDE. With the presented new approach, we circumvent this major complexity obstacle by combining two highly efficient model reduction strategies, namely a modern low-rank tensor representation in the tensor train format of the problem and a refinement algorithm on the basis of a posteriori error estimates to adaptively adjust the different employed discretizations. The adaptive adjustment includes the refinement of the FE mesh based on a residual estimator, the problem-adapted stochastic discretization in anisotropic Legendre Wiener chaos and the successive increase of the tensor rank. Computable a posteriori error estimators are derived for all error terms emanating from the discretizations and the iterative solution with a preconditioned ALS scheme of the problem. Strikingly, it is possible to exploit the tensor structure of the problem to evaluate all error terms very efficiently. A set of benchmark problems illustrates the performance of the adaptive algorithm with higher-order FE. Moreover, the influence of the tensor rank on the approximation quality is investigated.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/1958
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3396
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherPartial differential equations with random coefficientseng
dc.subject.othertensor representationeng
dc.subject.othertensor traineng
dc.subject.otheruncertainty quantificationeng
dc.subject.otherstochastic finite element methodseng
dc.subject.otheroperator equationseng
dc.subject.otheradaptive methodseng
dc.subject.otherALSeng
dc.subject.otherlow-rankeng
dc.subject.otherreduced basis methodseng
dc.titleAdaptive stochastic Galerkin FEM with hierarchical tensor representationseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
868887110.pdf
Size:
587.95 KB
Format:
Adobe Portable Document Format
Description: