Unified signature cumulants and generalized Magnus expansions

Loading...
Thumbnail Image

Date

Volume

2814

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Abstract

The signature of a path can be described as its full non-commutative exponential. Following T. Lyons we regard its expectation, the expected signature, as path space analogue of the classical moment generating function. The logarithm thereof, taken in the tensor algebra, defines the signature cumulant. We establish a universal functional relation in a general semimartingale context. Our work exhibits the importance of Magnus expansions in the algorithmic problem of computing expected signature cumulants, and further offers a far-reaching generalization of recent results on characteristic exponents dubbed diamond and cumulant expansions; with motivation ranging from financial mathematics to statistical physics. From an affine process perspective, the functional relation may be interpreted as infinite-dimensional, non-commutative (``Hausdorff") variation of Riccati's equation. Many examples are given.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.