Optimal selection of the regularization function in a generalized total variation model. Part II: Algorithm, its analysis and numerical tests

Loading...
Thumbnail Image
Date
2016
Volume
2236
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

Based on the generalized total variation model and its analysis pursued in part I (WIAS Preprint no. 2235), in this paper a continuous, i.e., infinite dimensional, projected gradient algorithm and its convergence analysis are presented. The method computes a stationary point of a regularized bilevel optimization problem for simultaneously recovering the image as well as determining a spatially distributed regularization weight. Further, its numerical realization is discussed and results obtained for image denoising and deblurring as well as Fourier and wavelet inpainting are reported on.

Description
Keywords
Citation
Hintermüller, M., Rautenberg, C. N., Wu, T., & Langer, A. (2016). Optimal selection of the regularization function in a generalized total variation model. Part II: Algorithm, its analysis and numerical tests. Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.