Aerosol size-resolved trace metal composition in remote northern tropical atlantic marine environment: Case study cape verde islands

dc.bibliographicCitation.firstPage4801eng
dc.bibliographicCitation.issue9eng
dc.bibliographicCitation.lastPage4814eng
dc.bibliographicCitation.volume13
dc.contributor.authorFomba, K.W.
dc.contributor.authorMüller, K.
dc.contributor.authorvan Pinxteren, D.
dc.contributor.authorHerrmann, H.
dc.date.accessioned2017-11-28T21:00:25Z
dc.date.available2019-06-26T17:19:19Z
dc.date.issued2013
dc.description.abstractSize-resolved trace metal concentrations of 15 elements in aerosol particles at the Cape Verde Atmospheric Observatory (CVAO) under remote background conditions were investigated through analysis of aerosol samples collected during intensive field studies from January 2007 to November 2011 using total reflection x-ray fluorescence (TXRF). The identification of the main air mass origin that influence remote marine aerosol in the northern tropical Atlantic has been investigated. In total, 317 samples were collected. The dataset was analyzed according to the main air mass inflow at the station. We found that remote conditions make up about 45% of the meteorological conditions in a year at CVAO and thus the northern tropical Atlantic. Surprisingly, air masses from North America are often responsible for higher trace metal concentrations in this region. Elements such as Zn, Pb, Cu, Cr, Ni, and V were mostly found in the submicron size fractions, while elements with dominant crustal or oceanic origin such as Fe, Ti, Mn, Sr, and Rb were found in the coarse fractions (>1 μm). The highest metal concentrations, especially for Zn (3.23 ng m−3), Cu (0.81 ng m−3), Sr (2.63 ng m−3), and Cr (0.53 ng m−3), were observed in air masses originating from North America and the concentrations were within the same concentration range to those reported previously in the literature for remote marine aerosols. Fe (12.26 ng m−3), Ti (0.91 ng m−3), and Mn (0.35 ng m−3) showed higher concentrations when air mass came from Europe and the Canary Islands. Pb concentration was low (<0.20 ng m−3) and did not vary significantly with air mass direction. The low Pb concentration is indicative of the complete phase-out of leaded gasoline even in African countries. Crustal enrichment factor values decreased from fine to coarse-mode particles with low values (<4) observed for Fe, Mn, and Rb, and high values (>20) for Zn, Cu, Ni, Cr, Pb, and Se. The observed enrichment of the elements was attributed to crustal, marine, anthropogenic, and biogenic sources, as well as long-range transport and resuspension. Zn, Cu and Pb were indicators of anthropogenic activities, while Ti and Sr were indicators of crustal and marine origin, respectively. Oceanic and biogenic emissions might have contributed to most of the Se observed. This work provides the first long-term size-resolved trace metals study for remote tropical northern Atlantic marine aerosols and the dataset could serve as good initiation of yearly flux estimates.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/746
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/670
dc.language.isoengeng
dc.publisherMünchen : European Geopyhsical Unioneng
dc.relation.doihttps://doi.org/10.5194/acp-13-4801-2013
dc.relation.ispartofseriesAtmospheric Chemistry and Physics, Volume 13, Issue 9, Page 4801-4814eng
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subjectaerosoleng
dc.subjectaerosol compositioneng
dc.subjectair masseng
dc.subjectannual variationeng
dc.subjectbiogenic emissioneng
dc.subjectconcentration (composition)eng
dc.subjectidentification methodeng
dc.subjectinfloweng
dc.subjectlong range transporteng
dc.subjectmarine atmosphereeng
dc.subjectparticle sizeeng
dc.subjectpoint sourceeng
dc.subjectsize distributioneng
dc.subjecttrace metaleng
dc.subjectX-ray fluorescenceeng
dc.subject.ddc550eng
dc.titleAerosol size-resolved trace metal composition in remote northern tropical atlantic marine environment: Case study cape verde islandseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAtmospheric Chemistry and Physicseng
tib.accessRightsopenAccesseng
wgl.contributorTROPOSeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acp-13-4801-2013.pdf
Size:
8.6 MB
Format:
Adobe Portable Document Format
Description: