Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model

dc.bibliographicCitation.firstPage4095eng
dc.bibliographicCitation.issue7eng
dc.bibliographicCitation.journalTitleACS Applied Bio Materialseng
dc.bibliographicCitation.lastPage4108eng
dc.bibliographicCitation.volume3eng
dc.contributor.authorHassan, Ghada
dc.contributor.authorForsman, Nina
dc.contributor.authorWan, Xing
dc.contributor.authorKeurulainen, Leena
dc.contributor.authorBimbo, Luis M.
dc.contributor.authorStehl, Susanne
dc.contributor.authorvan Charante, Frits
dc.contributor.authorChrubasik, Michael
dc.contributor.authorPrakash, Aruna S.
dc.contributor.authorJohansson, Leena-Sisko
dc.contributor.authorMullen, Declan C.
dc.contributor.authorJohnston, Blair F.
dc.contributor.authorZimmermann, Ralf
dc.contributor.authorWerner, Carsten
dc.contributor.authorYli-Kauhaluoma, Jari
dc.contributor.authorCoenye, Tom
dc.contributor.authorSaris, Per E.J.
dc.contributor.authorÖsterberg, Monika
dc.contributor.authorMoreira, Vânia M.
dc.date.accessioned2021-09-01T10:18:44Z
dc.date.available2021-09-01T10:18:44Z
dc.date.issued2020
dc.description.abstractBacterial biofilm infections incur massive costs on healthcare systems worldwide. Particularly worrisome are the infections associated with pressure ulcers and prosthetic, plastic, and reconstructive surgeries, where staphylococci are the major biofilm-forming pathogens. Non-leaching antimicrobial surfaces offer great promise for the design of bioactive coatings to be used in medical devices. However, the vast majority are cationic, which brings about undesirable toxicity. To circumvent this issue, we have developed antimicrobial nanocellulose films by direct functionalization of the surface with dehydroabietic acid derivatives. Our conceptually unique design generates non-leaching anionic surfaces that reduce the number of viable staphylococci in suspension, including drug-resistant Staphylococcus aureus, by an impressive 4-5 log units, upon contact. Moreover, the films clearly prevent bacterial colonization of the surface in a model mimicking the physiological environment in chronic wounds. Their activity is not hampered by high protein content, and they nurture fibroblast growth at the surface without causing significant hemolysis. In this work, we have generated nanocellulose films with indisputable antimicrobial activity demonstrated using state-of-the-art models that best depict an "in vivo scenario". Our approach is to use fully renewable polymers and find suitable alternatives to silver and cationic antimicrobials. © 2020 American Chemical Society.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6652
dc.identifier.urihttps://doi.org/10.34657/5699
dc.language.isoengeng
dc.publisherWashington, DC : ACS Publicationseng
dc.relation.doihttps://doi.org/10.1021/acsabm.0c00203
dc.relation.essn2576-6422
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc540eng
dc.subject.ddc570eng
dc.subject.otherantimicrobialeng
dc.subject.otherbiofilmeng
dc.subject.othercellulose nanofibrileng
dc.subject.otherdehydroabietic acideng
dc.titleNon-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Modeleng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
acsabm.0c00203.pdf
Size:
7 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Lizenz ACS 4_0.pdf
Size:
278.86 KB
Format:
Adobe Portable Document Format
Description:
Lizenz
Collections