Evaluation of satellite-based aerosol datasets and the CAMS reanalysis over the ocean utilizing shipborne reference observations

dc.bibliographicCitation.firstPage1387eng
dc.bibliographicCitation.issue3eng
dc.bibliographicCitation.lastPage1412eng
dc.bibliographicCitation.volume13eng
dc.contributor.authorWitthuhn, Jonas
dc.contributor.authorHünerbein, Anja
dc.contributor.authorDeneke, Hartwig
dc.date.accessioned2021-10-19T09:10:59Z
dc.date.available2021-10-19T09:10:59Z
dc.date.issued2020
dc.description.abstractReliable reference measurements over the ocean are essential for the evaluation and improvement of satelliteand model-based aerosol datasets. Within the framework of the Maritime Aerosol Network, shipborne reference datasets have been collected over the Atlantic Ocean since 2004 with Microtops Sun photometers. These were recently complemented by measurements with the multi-spectral GUVis- 3511 shadowband radiometer during five cruises with the research vessel Polarstern. The aerosol optical depth (AOD) uncertainty estimate of both shipborne instruments of ±0:02 can be confirmed if the GUVis instrument is cross calibrated to the Microtops instrument to account for differences in calibration, and if an empirical correction to account for the broad shadowband as well as the effects of forward scattering is introduced. Based on these two datasets, a comprehensive evaluation of aerosol products from the Moderate Resolution Imaging Spectroradiometer (MODIS) flown on NASA's Earth Observing System satellites, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat satellite, and the Copernicus Atmosphere Monitoring Service reanalysis (CAMS RA) is presented. For this purpose, focus is given to the accuracy of the AOD at 630 nm in combination with the Ångström exponent (AE), discussed in the context of the ambient aerosol type. In general, the evaluation of MODIS AOD from the official level-2 aerosol products of C6.1 against the Microtops AOD product confirms that 76% of data points fall into the expected error limits given by previous validation studies. The SEVIRI-based AOD product exhibits a 25% larger scatter than the MODIS AOD products at the instrument's native spectral channels. Further, the comparison of CAMS RA and MODIS AOD versus the shipborne reference shows similar performance for both datasets, with some differences arising from the assimilation and model assumptions. When considering aerosol conditions, an overestimation of AE is found for scenes dominated by desert dust for MODIS and SEVIRI products versus the shipborne reference dataset. As the composition of the mixture of aerosol in satellite products is constrained by model assumptions, this highlights the importance of considering the aerosol type in evaluation studies for identifying problematic aspects. © Author(s) 2020.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7041
dc.identifier.urihttps://doi.org/10.34657/6088
dc.language.isoengeng
dc.publisherKatlenburg-Lindau : Copernicuseng
dc.relation.doihttps://doi.org/10.5194/amt-13-1387-2020
dc.relation.essn1867-8548
dc.relation.ispartofseriesAtmospheric measurement techniques : AMT ; an interactive open access journal of the European Geosciences Union 13 (2020), Nr. 3eng
dc.relation.issn1867-1381
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectaerosol compositioneng
dc.subjectdata interpretationeng
dc.subjectEOSeng
dc.subjectMeteosateng
dc.subjectMODISeng
dc.subjectoptical deptheng
dc.subjectradiometereng
dc.subjectresearch vesseleng
dc.subjectsatellite altimetryeng
dc.subjectSEVIRIeng
dc.subjectshipborne measurementeng
dc.subjectAtlantic Oceaneng
dc.subjectAtlantic Oceaneng
dc.subject.ddc550eng
dc.titleEvaluation of satellite-based aerosol datasets and the CAMS reanalysis over the ocean utilizing shipborne reference observationseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAtmospheric measurement techniques : AMT ; an interactive open access journal of the European Geosciences Unioneng
tib.accessRightsopenAccesseng
wgl.contributorIAPeng
wgl.contributorTROPOSeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Evaluation of satellite-based aerosol datasets and the CAMS reanalysis over the ocean utilizing shipborne reference observations.pdf
Size:
9.76 MB
Format:
Adobe Portable Document Format
Description: