Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst

Loading...
Thumbnail Image
Date
2020
Volume
59
Issue
29
Journal
Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker : International edition
Series Titel
Book Title
Publisher
Weinheim : Wiley-VCH
Link to publishers version
Abstract

Rhodium nanoparticles immobilized on an acid-free triphenylphosphonium-based supported ionic liquid phase (Rh@SILP(Ph3-P-NTf2)) enabled the selective hydrogenation and hydrodeoxygenation of aromatic ketones. The flexible molecular approach used to assemble the individual catalyst components (SiO2, ionic liquid, nanoparticles) led to outstanding catalytic properties. In particular, intimate contact between the nanoparticles and the phosphonium ionic liquid is required for the deoxygenation reactivity. The Rh@SILP(Ph3-P-NTf2) catalyst was active for the hydrodeoxygenation of benzylic ketones under mild conditions, and the product distribution for non-benzylic ketones was controlled with high selectivity between the hydrogenated (alcohol) and hydrodeoxygenated (alkane) products by adjusting the reaction temperature. The versatile Rh@SILP(Ph3-P-NTf2) catalyst opens the way to the production of a wide range of high-value cyclohexane derivatives by the hydrogenation and/or hydrodeoxygenation of Friedel–Crafts acylation products and lignin-derived aromatic ketones. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Description
Keywords
Citation
Moos, G., Emondts, M., Bordet, A., & Leitner, W. (2020). Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst (Weinheim : Wiley-VCH). Weinheim : Wiley-VCH. https://doi.org//10.1002/anie.201916385
Collections
License
CC BY 4.0 Unported