General rough integration, Levy rough paths and a Levy-Kintchine type formula

No Thumbnail Available
Date
2012
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Cambridge : arXiv
Link to publishers version
Abstract

We consider rough paths with jumps. In particular, the analogue of Lyons’ extension theorem and rough integration are established in a jump setting, offering a pathwise view on stochastic integration against cádlág processes. A class of Lévy rough paths is introduced and characterized by a sub-ellipticity condition on the left-invariant diffusion vector fields and and a certain integrability property of the Carnot–Caratheodory norm with respect to the Lévy measure on the group, using Hunt’s framework of Lie group valued Lévy processes. Examples of Lévy rough paths include standard multi-dimensional Lévy process enhanced with stochastic area as constructed by D. Williams, the pure area Poisson process and Brownian motion in a magnetic field. An explicit formula for the expected signature is given.

Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.