General rough integration, Levy rough paths and a Levy-Kintchine type formula

dc.contributor.authorFriz, Peter
dc.contributor.authorShekhar, Atul
dc.date.accessioned2016-06-25T05:45:14Z
dc.date.available2019-06-28T08:22:16Z
dc.date.issued2012
dc.description.abstractWe consider rough paths with jumps. In particular, the analogue of Lyons’ extension theorem and rough integration are established in a jump setting, offering a pathwise view on stochastic integration against cádlág processes. A class of Lévy rough paths is introduced and characterized by a sub-ellipticity condition on the left-invariant diffusion vector fields and and a certain integrability property of the Carnot–Caratheodory norm with respect to the Lévy measure on the group, using Hunt’s framework of Lie group valued Lévy processes. Examples of Lévy rough paths include standard multi-dimensional Lévy process enhanced with stochastic area as constructed by D. Williams, the pure area Poisson process and Brownian motion in a magnetic field. An explicit formula for the expected signature is given.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3321
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1212.5888
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherYoung integrationeng
dc.subject.otherRough Pathseng
dc.subject.otherLévy processeseng
dc.subject.othergeneral theory of processeseng
dc.titleGeneral rough integration, Levy rough paths and a Levy-Kintchine type formulaeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections