Semimetal to semiconductor transition in Bi/TiO2 core/shell nanowires

dc.bibliographicCitation.firstPage263eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.journalTitleNanoscale advanceseng
dc.bibliographicCitation.lastPage271eng
dc.bibliographicCitation.volume3eng
dc.contributor.authorKockert, M.
dc.contributor.authorMitdank, R.
dc.contributor.authorMoon, H.
dc.contributor.authorKim, J.
dc.contributor.authorMogilatenko, A.
dc.contributor.authorMoosavi, S.H.
dc.contributor.authorKroener, M.
dc.contributor.authorWoias, P.
dc.contributor.authorLee, W.
dc.contributor.authorFischer, S.F.
dc.date.accessioned2022-03-30T06:30:00Z
dc.date.available2022-03-30T06:30:00Z
dc.date.issued2021
dc.description.abstractWe demonstrate the full thermoelectric and structural characterization of individual bismuth-based (Bi-based) core/shell nanowires. The influence of strain on the temperature dependence of the electrical conductivity, the absolute Seebeck coefficient and the thermal conductivity of bismuth/titanium dioxide (Bi/TiO2) nanowires with different diameters is investigated and compared to bismuth (Bi) and bismuth/tellurium (Bi/Te) nanowires and bismuth bulk. Scattering at surfaces, crystal defects and interfaces between the core and the shell reduces the electrical conductivity to less than 5% and the thermal conductivity to less than 25% to 50% of the bulk value at room temperature. On behalf of a compressive strain, Bi/TiO2 core/shell nanowires show a decreasing electrical conductivity with decreasing temperature opposed to that of Bi and Bi/Te nanowires. We find that the compressive strain induced by the TiO2 shell can lead to a band opening of bismuth increasing the absolute Seebeck coefficient by 10% to 30% compared to bulk at room temperature. In the semiconducting state, the activation energy is determined to |41.3 ± 0.2| meV. We show that if the strain exceeds the elastic limit the semimetallic state is recovered due to the lattice relaxation.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8462
dc.identifier.urihttps://doi.org/10.34657/7500
dc.language.isoengeng
dc.publisherCambridge : Royal Society of Chemistryeng
dc.relation.doihttps://doi.org/10.1039/d0na00658k
dc.relation.essn2516-0230
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subject.otherActivation energyeng
dc.subject.otherCrystal defectseng
dc.subject.otherElectric conductivity of solidseng
dc.subject.otherNanowireseng
dc.subject.otherOxide mineralseng
dc.subject.otherSeebeck coefficienteng
dc.subject.otherTemperature distributioneng
dc.subject.otherThermal conductivityeng
dc.subject.otherTitanium dioxideeng
dc.subject.otherCompressive straineng
dc.subject.otherCore/shell nanowireseng
dc.subject.otherElastic limiteng
dc.subject.otherElectrical conductivityeng
dc.subject.otherLattice relaxationeng
dc.subject.otherSemiconductor transitioneng
dc.subject.otherStructural characterizationeng
dc.subject.otherTemperature dependenceeng
dc.subject.otherBismuth compoundseng
dc.titleSemimetal to semiconductor transition in Bi/TiO2 core/shell nanowireseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorFBHeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Semimetal_to_semiconductor_transition.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
Description:
Collections