Utilizing anatomical information for signal detection in functional magnetic resonance imaging
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2806 | |
dc.contributor.author | Neumann, André | |
dc.contributor.author | Peitek, Norman | |
dc.contributor.author | Brechmann, André | |
dc.contributor.author | Tabelow, Karsten | |
dc.contributor.author | Dickhaus, Thorsten | |
dc.date.accessioned | 2022-07-05T14:00:01Z | |
dc.date.available | 2022-07-05T14:00:01Z | |
dc.date.issued | 2021 | |
dc.description.abstract | We are considering the statistical analysis of functional magnetic resonance imaging (fMRI) data. As demonstrated in previous work, grouping voxels into regions (of interest) and carrying out a multiple test for signal detection on the basis of these regions typically leads to a higher sensitivity when compared with voxel-wise multiple testing approaches. In the case of a multi-subject study, we propose to define the regions for each subject separately based on their individual brain anatomy, represented, e.g., by so-called Aparc labels. The aggregation of the subject-specific evidence for the presence of signals in the different regions is then performed by means of a combination function for p-values. We apply the proposed methodology to real fMRI data and demonstrate that our approach can perform comparably to a two-stage approach for which two independent experiments are needed, one for defining the regions and one for actual signal detection. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9524 | |
dc.identifier.uri | https://doi.org/10.34657/8562 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2806 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Aparc label | eng |
dc.subject.other | combination test | eng |
dc.subject.other | false discovery rate | eng |
dc.subject.other | family-wise error rate | eng |
dc.subject.other | mass-univariate linear model | eng |
dc.subject.other | multiple testing | eng |
dc.subject.other | program comprehension | eng |
dc.title | Utilizing anatomical information for signal detection in functional magnetic resonance imaging | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 15 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2806.pdf
- Size:
- 2.93 MB
- Format:
- Adobe Portable Document Format
- Description: