Ion-irradiation-assisted tuning of phase transformations and physical properties in single crystalline Fe7Pd3ferromagnetic shape memory alloy thin films

dc.bibliographicCitation.firstPage053029eng
dc.bibliographicCitation.issue5eng
dc.bibliographicCitation.journalTitleNew journal of physics : the open-access journal for physicseng
dc.bibliographicCitation.volume17eng
dc.contributor.authorArabi-Hashemi, A.
dc.contributor.authorWitte, R.
dc.contributor.authorLotnyk, A.
dc.contributor.authorBrand, R.A.
dc.contributor.authorSetzer, A.
dc.contributor.authorEsquinazi, P.
dc.contributor.authorHahn, H.
dc.contributor.authorAverback, R.S.
dc.contributor.authorMayr, S.G.
dc.date.accessioned2022-07-01T07:37:40Z
dc.date.available2022-07-01T07:37:40Z
dc.date.issued2015
dc.description.abstractControl of multi-martensite phase transformations and physical properties constitute greatly unresolved challenges in Fe7Pd3-based ferromagnetic shape memory alloys. Single crystalline Fe7Pd3 thin films reveal an austenite to martensite phase transformation, continuously ranging from the face-centered cubic (fcc) to the face-centered tetragonal (fct) and body-centered cubic (bcc) phases upon irradiation with 1.8 MeV Kr+ ions. Within the present contribution, we explore this scenario within a comprehensive experimental study: employing atomic force microscopy (AFM) and high resolution transmission electron microscopy (HR-TEM), we first clarify the crystallography of the ion-irradiation-induced austenite $\Rightarrow $ martensite and inter-martensite transitions, explore the multi-variant martensite structures with c-a twinning and unravel a very gradual transition between variants at twin boundaries. Accompanying magnetic properties, addressed locally and globally, are characterized by an increasing saturation magnetization from fcc to bcc, while coercivity and remanence are demonstrated to be governed by magnetocrystalline anisotropy and ion-irradiation-induced defect density, respectively. Based on reversibility of ion-irradiation-induced materials changes due to annealing treatment and a conversion electron Mößbauer spectroscopy (CEMS) study to address changes in order, a quantitative defect-based physical picture of ion-irradiation-induced austenite ⇔ martensite transformation in Fe7Pd3 is developed. The presented concepts thus pave the way for ion-irradiation-assisted optimization strategies for tailored functional alloys.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9467
dc.identifier.urihttps://doi.org/10.34657/8505
dc.language.isoengeng
dc.publisher[London] : IOPeng
dc.relation.doihttps://doi.org/10.1088/1367-2630/17/5/053029
dc.relation.essn1367-2630
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subject.ddc530eng
dc.subject.otherIon irradiationeng
dc.subject.otherMartensitic transformationseng
dc.subject.otherMetallic alloyseng
dc.subject.otherShape memory materialseng
dc.subject.otherThermodynamicseng
dc.titleIon-irradiation-assisted tuning of phase transformations and physical properties in single crystalline Fe7Pd3ferromagnetic shape memory alloy thin filmseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIOMeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ion-irradiation-assisted_tuning_of_phase_transformations.pdf
Size:
2.63 MB
Format:
Adobe Portable Document Format
Description:
Collections