Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy

Loading...
Thumbnail Image

Date

Volume

63

Issue

9

Journal

Journal of mathematical imaging and vision

Series Titel

Book Title

Publisher

Dordrecht [u.a.] : Springer Science + Business Media B.V

Abstract

The quantification of uncertainties in image segmentation based on the Mumford–Shah model is studied. The aim is to address the error propagation of noise and other error types in the original image to the restoration result and especially the reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio–Tortorelli approximation and discuss the existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular methods. Numerical examples illustrate the theoretical findings.

Description

Keywords

Collections

License

CC BY 4.0 Unported