Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy
dc.bibliographicCitation.firstPage | 1095 | eng |
dc.bibliographicCitation.issue | 9 | eng |
dc.bibliographicCitation.journalTitle | Journal of mathematical imaging and vision | eng |
dc.bibliographicCitation.lastPage | 1117 | eng |
dc.bibliographicCitation.volume | 63 | eng |
dc.contributor.author | Hintermüller, Michael | |
dc.contributor.author | Stengl, Steven-Marian | |
dc.contributor.author | Surowiec, Thomas M. | |
dc.date.accessioned | 2022-03-23T05:40:36Z | |
dc.date.available | 2022-03-23T05:40:36Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The quantification of uncertainties in image segmentation based on the Mumford–Shah model is studied. The aim is to address the error propagation of noise and other error types in the original image to the restoration result and especially the reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio–Tortorelli approximation and discuss the existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular methods. Numerical examples illustrate the theoretical findings. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/8322 | |
dc.identifier.uri | https://doi.org/10.34657/7360 | |
dc.language.iso | eng | eng |
dc.publisher | Dordrecht [u.a.] : Springer Science + Business Media B.V | eng |
dc.relation.doi | https://doi.org/10.1007/s10851-021-01034-2 | |
dc.relation.essn | 1573-7683 | |
dc.rights.license | CC BY 4.0 Unported | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | eng |
dc.subject.ddc | 510 | eng |
dc.subject.other | Ambrosio–Tortorelli approximation | eng |
dc.subject.other | Error propagation due to noise | eng |
dc.subject.other | Image segmentation | eng |
dc.subject.other | Measurable selections | eng |
dc.subject.other | Mumford–Shah model | eng |
dc.subject.other | Numerical methods | eng |
dc.subject.other | Quantification of uncertainties | eng |
dc.title | Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy | eng |
dc.type | Article | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Zeitschriftenartikel | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Uncertainty_Quantification_in_Image.pdf
- Size:
- 2.07 MB
- Format:
- Adobe Portable Document Format
- Description: