Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy

dc.bibliographicCitation.firstPage1095eng
dc.bibliographicCitation.issue9eng
dc.bibliographicCitation.journalTitleJournal of mathematical imaging and visioneng
dc.bibliographicCitation.lastPage1117eng
dc.bibliographicCitation.volume63eng
dc.contributor.authorHintermüller, Michael
dc.contributor.authorStengl, Steven-Marian
dc.contributor.authorSurowiec, Thomas M.
dc.date.accessioned2022-03-23T05:40:36Z
dc.date.available2022-03-23T05:40:36Z
dc.date.issued2021
dc.description.abstractThe quantification of uncertainties in image segmentation based on the Mumford–Shah model is studied. The aim is to address the error propagation of noise and other error types in the original image to the restoration result and especially the reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio–Tortorelli approximation and discuss the existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular methods. Numerical examples illustrate the theoretical findings.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8322
dc.identifier.urihttps://doi.org/10.34657/7360
dc.language.isoengeng
dc.publisherDordrecht [u.a.] : Springer Science + Business Media B.Veng
dc.relation.doihttps://doi.org/10.1007/s10851-021-01034-2
dc.relation.essn1573-7683
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc510eng
dc.subject.otherAmbrosio–Tortorelli approximationeng
dc.subject.otherError propagation due to noiseeng
dc.subject.otherImage segmentationeng
dc.subject.otherMeasurable selectionseng
dc.subject.otherMumford–Shah modeleng
dc.subject.otherNumerical methodseng
dc.subject.otherQuantification of uncertaintieseng
dc.titleUncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energyeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Uncertainty_Quantification_in_Image.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:
Collections