Gradient flows for bounded linear evolution equations
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2881 | |
dc.contributor.author | Renger, D. R. Michiel | |
dc.contributor.author | Schindler, Stefanie | |
dc.date.accessioned | 2022-07-05T14:28:47Z | |
dc.date.available | 2022-07-05T14:28:47Z | |
dc.date.issued | 2021 | |
dc.description.abstract | We study linear evolution equations in separable Hilbert spaces defined by a bounded linear operator. We answer the question which of these equations can be written as a gradient flow, namely those for which the operator is real diagonalisable. The proof is constructive, from which we also derive geodesic lambda-convexity. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9599 | |
dc.identifier.uri | https://doi.org/10.34657/8637 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2881 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Linear evolution equation | eng |
dc.subject.other | gradient system | eng |
dc.subject.other | gradient flow | eng |
dc.subject.other | spectral theory | eng |
dc.subject.other | geodesic lambda-convexity | eng |
dc.title | Gradient flows for bounded linear evolution equations | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 9 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2881.pdf
- Size:
- 207.58 KB
- Format:
- Adobe Portable Document Format
- Description: