Statistical inference for Bures--Wasserstein barycenters

Loading...
Thumbnail Image

Date

Volume

2788

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Abstract

In this work we introduce the concept of Bures--Wasserstein barycenter $Q_$, that is essentially a Fréchet mean of some distribution $P$ supported on a subspace of positive semi-definite $d$-dimensional Hermitian operators $H_+(d)$. We allow a barycenter to be constrained to some affine subspace of $H_+(d)$, and we provide conditions ensuring its existence and uniqueness. We also investigate convergence and concentration properties of an empirical counterpart of $Q_$ in both Frobenius norm and Bures--Wasserstein distance, and explain, how the obtained results are connected to optimal transportation theory and can be applied to statistical inference in quantum mechanics.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.