Rank Deviations for Overpartitions

Loading...
Thumbnail Image

Date

Volume

11

Issue

Journal

Series Titel

Oberwolfach Preprints (OWP)

Book Title

Publisher

Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach

Link to publishers version

Abstract

We prove general fomulas for the deviations of two overpartition ranks from the average, namely \begin{equation*} \overline{D}(a, M) := \sum_{n \geq 0} \Bigl( \overline{N}(a, M, n) - \frac{\overline{p}(n)}{M} \Bigr) q^n \end{equation*} and \begin{equation*} \overline{D}{2}(a,M) := \sum{n \geq 0} \Bigl( \overline{N}{2}(a, M, n) - \frac{\overline{p}(n)}{M} \Bigr) q^n \end{equation*} where $\overline{N}(a, M, n)$ denotes the number of overpartitions of $n$ with rank congruent to $a$ modulo $M$, $\overline{N}{2}(a, M, n)$ is the number of overpartitions of $n$ with $M_2$-rank congruent to $a$ modulo $M$ and $\overline{p}(n)$ is the number of overpartitions of $n$. These formulas are in terms of Appell-Lerch series and sums of quotients of theta functions and can be used, among other things, to recover any of the numerous overpartition rank difference identities in the literature. We give examples for $M=3$ and $6$.

Description

Keywords

Overpartitions, Rank, M2-Rank, Appell-Lerch series

License

Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.