Rank Deviations for Overpartitions

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume11
dc.contributor.authorLovejoy, Jeremy
dc.contributor.authorOsburn, Robert
dc.date.accessioned2024-10-17T05:47:41Z
dc.date.available2024-10-17T05:47:41Z
dc.date.issued2023
dc.description.abstractWe prove general fomulas for the deviations of two overpartition ranks from the average, namely \begin{equation*} \overline{D}(a, M) := \sum_{n \geq 0} \Bigl( \overline{N}(a, M, n) - \frac{\overline{p}(n)}{M} \Bigr) q^n \end{equation*} and \begin{equation*} \overline{D}_{2}(a,M) := \sum_{n \geq 0} \Bigl( \overline{N}_{2}(a, M, n) - \frac{\overline{p}(n)}{M} \Bigr) q^n \end{equation*} where $\overline{N}(a, M, n)$ denotes the number of overpartitions of $n$ with rank congruent to $a$ modulo $M$, $\overline{N}_{2}(a, M, n)$ is the number of overpartitions of $n$ with $M_2$-rank congruent to $a$ modulo $M$ and $\overline{p}(n)$ is the number of overpartitions of $n$. These formulas are in terms of Appell-Lerch series and sums of quotients of theta functions and can be used, among other things, to recover any of the numerous overpartition rank difference identities in the literature. We give examples for $M=3$ and $6$.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16980
dc.identifier.urihttps://doi.org/10.34657/16002
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doi10.14760/OWP-2023-11
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subjectOverpartitions
dc.subjectRank
dc.subjectM2-Rank
dc.subjectAppell-Lerch series
dc.subject.ddc510
dc.titleRank Deviations for Overpartitions
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2023_11.pdf
Size:
358.95 KB
Format:
Adobe Portable Document Format
Description: