Self-heating effects in organic semiconductor devices enhanced by positive temperature feedback
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 1693 | |
dc.contributor.author | Fischer, Axel | |
dc.contributor.author | Pahner, Paul | |
dc.contributor.author | Lüssem, Björn | |
dc.contributor.author | Leo, Karl | |
dc.contributor.author | Scholz, Reinhard | |
dc.contributor.author | Koprucki, Thomas | |
dc.contributor.author | Fuhrmann, Jürgen | |
dc.contributor.author | Gärtner, Klaus | |
dc.contributor.author | Glitzky, Annegret | |
dc.date.accessioned | 2016-03-24T17:38:06Z | |
dc.date.available | 2019-06-28T08:02:15Z | |
dc.date.issued | 2012 | |
dc.description.abstract | We studied the influence of heating effects in an organic device containing a layer sequence of n-doped / intrinsic / n-doped C60 between crossbar metal electrodes. A strong positive feedback between current and temperature occurs at high current densities beyond 100 A/cm2, as predicted by the extended Gaussian disorder model (EGDM) applicable to organic semiconductors. These devices give a perfect setting for studying the heat transport at high power densities because C60 can withstand temperatures above 200ʿ C. Infrared images of the device and detailed numerical simulations of the heat transport demonstrate that the electrical circuit produces a superposition of a homogeneous power dissipation in the active volume and strong heat sources localized at the contact edges ... | |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 0946-8633 | |
dc.identifier.uri | https://doi.org/10.34657/3154 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/1781 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.subject.ddc | 510 | |
dc.subject.other | Heat conductivity | eng |
dc.subject.other | organic semiconductor | eng |
dc.subject.other | C60 | eng |
dc.subject.other | crossbar electrodes | eng |
dc.subject.other | Joule heating | eng |
dc.subject.other | device temperature | eng |
dc.subject.other | thermal resistance | eng |
dc.subject.other | break down | eng |
dc.subject.other | analytical solution | eng |
dc.subject.other | heat frow equation | eng |
dc.subject.other | 3D simulation | eng |
dc.subject.other | finite volume method | eng |
dc.title | Self-heating effects in organic semiconductor devices enhanced by positive temperature feedback | |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1