Problem-based optimal scenario generation and reduction in stochastic programming

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2485
dc.contributor.authorHenrion, Réne
dc.contributor.authorRömisch, Werner
dc.date.accessioned2018-04-16T09:57:58Z
dc.date.available2019-06-28T08:17:07Z
dc.date.issued2018
dc.description.abstractScenarios are indispensable ingredients for the numerical solution of stochastic programs. Earlier approaches to optimal scenario generation and reduction are based on stability arguments involving distances of probability measures. In this paper we review those ideas and suggest to make use of stability estimates based only on problem specific data. For linear two-stage stochastic programs we show that the problem-based approach to optimal scenario generation can be reformulated as best approximation problem for the expected recourse function which in turn can be rewritten as a generalized semi-infinite program. We show that the latter is convex if either right-hand sides or costs are random and can be transformed into a semi-infinite program in a number of cases. We also consider problem-based optimal scenario reduction for two-stage models and optimal scenario generation for chance constrained programs. Finally, we discuss problem-based scenario generation for the classical newsvendor problem.
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/3034
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3110
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2485
dc.relation.issn0946-8633eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.otherStochastic optimizationeng
dc.subject.othergeneralized semi-infinite programmingeng
dc.subject.otherscenario generationeng
dc.titleProblem-based optimal scenario generation and reduction in stochastic programming
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1016598785.pdf
Size:
259.18 KB
Format:
Adobe Portable Document Format
Description: