Deterministic positioning of nanophotonic waveguides around single self-assembled quantum dots

dc.bibliographicCitation.firstPage5117888eng
dc.bibliographicCitation.issue8eng
dc.bibliographicCitation.journalTitleAPL Photonicseng
dc.bibliographicCitation.volume5eng
dc.contributor.authorPregnolato, T.
dc.contributor.authorChu, X.-L.
dc.contributor.authorSchröder, T.
dc.contributor.authorSchott, R.
dc.contributor.authorWieck, A.D.
dc.contributor.authorLudwig, A.
dc.contributor.authorLodahl, P.
dc.contributor.authorRotenberg, N.
dc.date.accessioned2021-08-06T08:57:33Z
dc.date.available2021-08-06T08:57:33Z
dc.date.issued2020
dc.description.abstractThe capability to embed self-assembled quantum dots (QDs) at predefined positions in nanophotonic structures is key to the development of complex quantum-photonic architectures. Here, we demonstrate that QDs can be deterministically positioned in nanophotonic waveguides by pre-locating QDs relative to a global reference frame using micro-photoluminescence (μPL) spectroscopy. After nanofabrication, μPL images reveal misalignments between the central axis of the waveguide and the embedded QD of only (9 ± 46) nm and (1 ± 33) nm for QDs embedded in undoped and doped membranes, respectively. A priori knowledge of the QD positions allows us to study the spectral changes introduced by nanofabrication. We record average spectral shifts ranging from 0.1 nm to 1.1 nm, indicating that the fabrication-induced shifts can generally be compensated by electrical or thermal tuning of the QDs. Finally, we quantify the effects of the nanofabrication on the polarizability, the permanent dipole moment, and the emission frequency at vanishing electric field of different QD charge states, finding that these changes are constant down to QD-surface separations of only 70 nm. Consequently, our approach deterministically integrates QDs into nanophotonic waveguides whose light-fields contain nanoscale structure and whose group index varies at the nanometer level. © 2020 Author(s).eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6484
dc.identifier.urihttps://doi.org/10.34657/5531
dc.language.isoengeng
dc.publisherMelville, NY : AIP Publishingeng
dc.relation.doihttps://doi.org/10.1063/1.5117888
dc.relation.essn2378-0967
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherElectric fieldseng
dc.subject.otherNanocrystalseng
dc.subject.otherNanophotonicseng
dc.subject.otherOptical waveguideseng
dc.subject.otherEmission frequencyeng
dc.subject.otherMicro photoluminescenceeng
dc.subject.otherNanophotonic structureseng
dc.subject.otherNanophotonic waveguideseng
dc.subject.otherNanoscale structureeng
dc.subject.otherPre-defined positioneng
dc.subject.otherSelf assembled quantum dotseng
dc.subject.otherSurface separationeng
dc.titleDeterministic positioning of nanophotonic waveguides around single self-assembled quantum dotseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorFBHeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.5117888.pdf
Size:
4.1 MB
Format:
Adobe Portable Document Format
Description:
Collections