Constraining modelled global vegetation dynamics and carbon turnover using multiple satellite observations

dc.bibliographicCitation.firstPage18757
dc.bibliographicCitation.journalTitleScientific Reportseng
dc.bibliographicCitation.volume9
dc.contributor.authorForkel, Matthias
dc.contributor.authorDrüke, Markus
dc.contributor.authorThurner, Martin
dc.contributor.authorDorigo, Wouter
dc.contributor.authorSchaphoff, Sibyll
dc.contributor.authorThonicke, Kirsten
dc.contributor.authorvon Bloh, Werner
dc.contributor.authorCarvalhais, Nuno
dc.date.accessioned2022-10-24T07:53:25Z
dc.date.available2022-10-24T07:53:25Z
dc.date.issued2019
dc.description.abstractThe response of land ecosystems to future climate change is among the largest unknowns in the global climate-carbon cycle feedback. This uncertainty originates from how dynamic global vegetation models (DGVMs) simulate climate impacts on changes in vegetation distribution, productivity, biomass allocation, and carbon turnover. The present-day availability of a multitude of satellite observations can potentially help to constrain DGVM simulations within model-data integration frameworks. Here, we use satellite-derived datasets of the fraction of absorbed photosynthetic active radiation (FAPAR), sun-induced fluorescence (SIF), above-ground biomass of trees (AGB), land cover, and burned area to constrain parameters for phenology, productivity, and vegetation dynamics in the LPJmL4 DGVM. Both the prior and the optimized model accurately reproduce present-day estimates of the land carbon cycle and of temporal dynamics in FAPAR, SIF and gross primary production. However, the optimized model reproduces better the observed spatial patterns of biomass, tree cover, and regional forest carbon turnover. Using a machine learning approach, we found that remaining errors in simulated forest carbon turnover can be explained with bioclimatic variables. This demonstrates the need to improve model formulations for climate effects on vegetation turnover and mortality despite the apparent successful constraint of simulated vegetation dynamics with multiple satellite observations.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10324
dc.identifier.urihttp://dx.doi.org/10.34657/9360
dc.language.isoeng
dc.publisher[London] : Macmillan Publishers Limited, part of Springer Nature
dc.relation.doihttps://doi.org/10.1038/s41598-019-55187-7
dc.relation.essn2045-2322
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc500eng
dc.subject.ddc600eng
dc.subject.otherBiogeographyeng
dc.subject.otherCarbon cycleeng
dc.subject.otherEcological modellingeng
dc.titleConstraining modelled global vegetation dynamics and carbon turnover using multiple satellite observationseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorPIK
wgl.subjectGeowissenschaften
wgl.subjectUmweltwissenschaften
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-019-55187-7.pdf
Size:
4.42 MB
Format:
Adobe Portable Document Format
Description: