Evolution of particle composition in CLOUD nucleation experiments

dc.bibliographicCitation.firstPage5587eng
dc.bibliographicCitation.issue11eng
dc.bibliographicCitation.lastPage5600eng
dc.bibliographicCitation.volume13
dc.contributor.authorKeskinen, H.
dc.contributor.authorVirtanen, A.
dc.contributor.authorJoutsensaari, J.
dc.contributor.authorTsagkogeorgas, G.
dc.contributor.authorDuplissy, J.
dc.contributor.authorSchobesberger, S.
dc.contributor.authorGysel, M.
dc.contributor.authorRiccobono, F.
dc.contributor.authorSlowik, J.G.
dc.contributor.authorBianchi, F.
dc.contributor.authorYli-Juuti, T.
dc.contributor.authorLehtipalo, K.
dc.contributor.authorRondo, L.
dc.contributor.authorBreitenlechner, M.
dc.contributor.authorKupc, A.
dc.contributor.authorAlmeida, J.
dc.contributor.authorAmorim, A.
dc.contributor.authorDunne, E.M.
dc.contributor.authorDownard, A.J.
dc.contributor.authorEhrhart, S.
dc.contributor.authorFranchin, A.
dc.contributor.authorKajos, M.K.
dc.contributor.authorKirkby, J.
dc.contributor.authorKürten, A.
dc.contributor.authorNieminen, T.
dc.contributor.authorMakhmutov, V.
dc.contributor.authorMathot, S.
dc.contributor.authorMiettinen, P.
dc.contributor.authorOnnela, A.
dc.contributor.authorPetäjä, T.
dc.contributor.authorPraplan, A.
dc.contributor.authorSantos, F.D.
dc.contributor.authorSchallhart, S.
dc.contributor.authorSipilä, M.
dc.contributor.authorStozhkov, Y.
dc.contributor.authorTomé, A.
dc.contributor.authorVaattovaara, P.
dc.contributor.authorWimmer, D.
dc.contributor.authorPrevot, A.
dc.contributor.authorDommen, J.
dc.contributor.authorDonahue, N.M.
dc.contributor.authorFlagan, R.C.
dc.contributor.authorWeingartner, E.
dc.contributor.authorViisanen, Y.
dc.contributor.authorRiipinen, I.
dc.contributor.authorHansel, A.
dc.contributor.authorCurtius, J.
dc.contributor.authorKulmala, M.
dc.contributor.authorWorsnop, D.R.
dc.contributor.authorBaltensperger, U.
dc.contributor.authorWex, H.
dc.contributor.authorStratmann, F.
dc.contributor.authorLaaksonen, A.
dc.date.accessioned2017-11-28T21:00:25Z
dc.date.available2019-06-26T17:19:19Z
dc.date.issued2013
dc.description.abstractSulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre européen pour la recherche nucléaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during their growth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts). In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ~0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid, ammonia, dimethylamine and organic oxidation products.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/957
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/669
dc.language.isoengeng
dc.publisherMünchen : European Geopyhsical Unioneng
dc.relation.doihttps://doi.org/10.5194/acp-13-5587-2013
dc.relation.ispartofseriesAtmospheric Chemistry and Physics, Volume 13, Issue 11, Page 5587-5600eng
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subjectaerosoleng
dc.subjectaerosol compositioneng
dc.subjectaerosol formationeng
dc.subjectammoniaeng
dc.subjecthygroscopicityeng
dc.subjectnucleationeng
dc.subjectorganic compoundeng
dc.subjectsulfuric acideng
dc.subject.ddc550eng
dc.titleEvolution of particle composition in CLOUD nucleation experimentseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAtmospheric Chemistry and Physicseng
tib.accessRightsopenAccesseng
wgl.contributorTROPOSeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acp-13-5587-2013.pdf
Size:
3.7 MB
Format:
Adobe Portable Document Format
Description: