Tuning the Permeation Properties of Poly(1-trimethylsilyl-1-propyne) by Vapor Phase Infiltration Using Trimethylaluminum

dc.bibliographicCitation.articleNumber2400171
dc.bibliographicCitation.firstPage2400171
dc.bibliographicCitation.issue28
dc.bibliographicCitation.journalTitleAdvanced Materials Interfaces
dc.bibliographicCitation.volume11
dc.contributor.authorJenderny, Jonathan
dc.contributor.authorBoysen, Nils
dc.contributor.authorRubner, Jens
dc.contributor.authorZysk, Frederik
dc.contributor.authorPreischel, Florian
dc.contributor.authorArcos, Teresa de los
dc.contributor.authorDamerla, Varun Raj
dc.contributor.authorKostka, Aleksander
dc.contributor.authorFranke, Jonas
dc.contributor.authorDahlmann, Rainer
dc.contributor.authorKühne, Thomas D.
dc.contributor.authorWessling, Matthias
dc.contributor.authorAwakowicz, Peter
dc.contributor.authorDevi, Anjana
dc.date.accessioned2024-10-15T08:49:24Z
dc.date.available2024-10-15T08:49:24Z
dc.date.issued2024
dc.description.abstractVapor phase infiltration (VPI) has emerged as a promising tool for fabrication of novel hybrid materials. In the field of polymeric gas separation membranes, a beneficial impact on stability and membrane performance is known for several polymers with differing functional groups. This study for the first time investigates VPI of trimethylaluminum (TMA) into poly(1-trimethylsilyl-1-propyne) (PTMSP), featuring a carbon–carbon double bond as functional group. Saturation of the precursor inside the polymer is already attained after 60 s infiltration time leading to significant densification of the material. Depth profiling proves accumulation of aluminum in the polymer itself, but a significantly increased accumulation is visible in the gradient layer between polymer and SiO2 substrate. A reaction pathway is proposed and supplemented by density-functional theory (DFT) calculations. Infrared spectra derived from both experiments and simulation support the presented reaction pathway. In terms of permeance, a favorable impact on selectivity is observed for infiltration times up to 1 s. Longer infiltration times yield greatly reduced permeance values close or even below the detection limit of the measurement device. The present results of this study set a strong basis for the application of VPI on polymers for gas-barrier and membrane applications in the future.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16808
dc.identifier.urihttps://doi.org/10.34657/15830
dc.language.isoeng
dc.publisherWeinheim : Wiley-VCH
dc.relation.doihttps://doi.org/10.1002/admi.202400171
dc.relation.essn2196-7350
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc540
dc.subject.ddc600
dc.subject.othergas separationeng
dc.subject.othermembraneeng
dc.subject.otherPTMSPeng
dc.subject.otherTMAeng
dc.subject.othervapor phase infiltrationeng
dc.titleTuning the Permeation Properties of Poly(1-trimethylsilyl-1-propyne) by Vapor Phase Infiltration Using Trimethylaluminumeng
dc.typeArticle
dc.typeText
tib.accessRightsopenAccess
wgl.contributorIFWD
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tuning-the-Permeation-Properties-of-Poly.pdf
Size:
4.92 MB
Format:
Adobe Portable Document Format
Description:
Collections