Discrete logistic branching populations and the canonical diffusion and the canonical diffusion of adaptive dynamics

Loading...
Thumbnail Image

Date

Volume

1095

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

The biological theory of adaptive dynamics proposes a description of the long-time evolution of an asexual population, based on the assumptions of large population, rare mutations and small mutation steps, that lead to a deterministic ODE, called `canonical equation of adaptive dynamics'. However, in order to include the effect of genetic drift in this description, we have to apply a limit of weak selection to a finite stochastically fluctuating discrete population subject to competition in the logistic branching fashion. We start with the study of the particular case of two competing subpopulations (resident and mutant) and seek explicit first-order formulae for the probability of fixation of the mutant, also interpreted as the mutant's fitness, in the vicinity of neutrality. In particular, the first-order term is a linear combination of products of functions of the initial mutant frequency times functions of the initial total population size, called invasibility coefficients (fertility, defence, aggressiveness, isolation, survival). Then we apply a limit of rare mutations to a population subject to mutation, birth and competition where the number of coexisting types may fluctuate, while keeping the population size finite. This leads to a jump process ...

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.