Copositivity and Complete Positivity

Loading...
Thumbnail Image
Date
2017
Authors
Volume
52
Issue
Journal
Series Titel
Oberwolfach reports : OWR
Book Title
Publisher
Zürich : EMS Publ. House
Link to publishers version
Abstract

A real matrix $A$ is called copositive if $x^TAx \ge 0$ holds for all $x \in \mathbb R^n_+$. A matrix $A$ is called completely positive if it can be factorized as $A = BB^T$ , where $B$ is an entrywise nonnegative matrix. The concept of copositivity can be traced back to Theodore Motzkin in 1952, and that of complete positivity to Marshal Hall Jr. in 1958. The two classes are related, and both have received considerable attention in the linear algebra community and in the last two decades also in the mathematical optimization community. These matrix classes have important applications in various fields, in which they arise naturally, including mathematical modeling, optimization, dynamical systems and statistics. More applications constantly arise. The workshop brought together people working in various disciplines related to copositivity and complete positivity, in order to discuss these concepts from different viewpoints and to join forces to better understand these difficult but fascinating classes of matrices.

Description
Keywords
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.