Copositivity and Complete Positivity

dc.bibliographicCitation.firstPage3071
dc.bibliographicCitation.lastPage3120
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume52
dc.contributor.otherBomze, Immanuel M.
dc.contributor.otherDür, Mirjam
dc.contributor.otherShaked-Monderer, Naomi
dc.date.accessioned2023-12-15T09:50:10Z
dc.date.available2023-12-15T09:50:10Z
dc.date.issued2017
dc.description.abstractA real matrix $A$ is called copositive if $x^TAx \ge 0$ holds for all $x \in \mathbb R^n_+$. A matrix $A$ is called completely positive if it can be factorized as $A = BB^T$ , where $B$ is an entrywise nonnegative matrix. The concept of copositivity can be traced back to Theodore Motzkin in 1952, and that of complete positivity to Marshal Hall Jr. in 1958. The two classes are related, and both have received considerable attention in the linear algebra community and in the last two decades also in the mathematical optimization community. These matrix classes have important applications in various fields, in which they arise naturally, including mathematical modeling, optimization, dynamical systems and statistics. More applications constantly arise. The workshop brought together people working in various disciplines related to copositivity and complete positivity, in order to discuss these concepts from different viewpoints and to join forces to better understand these difficult but fascinating classes of matrices.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13328
dc.identifier.urihttps://doi.org/10.34657/12358
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2017-52
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleCopositivity and Complete Positivityeng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Copositivity and Complete Positivity, 29 Oct - 04 Nov 2017, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2017_52.pdf
Size:
424.59 KB
Format:
Adobe Portable Document Format
Description: