First results of the "Carbonaceous Aerosol in Rome and Environs (CARE)" Experiment: Beyond current standards for PM10

dc.bibliographicCitation.firstPage249
dc.bibliographicCitation.issue12
dc.bibliographicCitation.volume8
dc.contributor.authorCostabile, Francesca
dc.contributor.authorAlas, Honey
dc.contributor.authorAufderheide, Michaela
dc.contributor.authorAvino, Pasquale
dc.contributor.authorAmato, Fulvio
dc.contributor.authorArgentini, Stefania
dc.contributor.authorBarnaba, Francesca
dc.contributor.authorBerico, Massimo
dc.contributor.authorBernardoni, Vera
dc.contributor.authorBiondi, Riccardo
dc.contributor.authorCasasanta, Giampietro
dc.contributor.authorCiampichetti, Spartaco
dc.contributor.authorCalzolai, Giulia
dc.contributor.authorCanepari, Silvia
dc.contributor.authorConidi, Alessandro
dc.contributor.authorCordelli, Eugenia
dc.contributor.authorDi Ianni, Antonio
dc.contributor.authorDi Liberto, Luca
dc.contributor.authorFacchini, Maria Cristina
dc.contributor.authorFacci, Andrea
dc.contributor.authorFrasca, Daniele
dc.contributor.authorGilardoni, Stefania
dc.contributor.authorGrollino, Maria Giuseppa
dc.contributor.authorGualtieri, Maurizio
dc.contributor.authorLucarelli, Franco
dc.contributor.authorMalaguti, Antonella
dc.contributor.authorManigrasso, Maurizio
dc.contributor.authorMontagnoli, Mauro
dc.contributor.authorNava, Silvia
dc.contributor.authorPerrino, Cinzia
dc.contributor.authorPadoan, Elio
dc.contributor.authorPetenko, Igor
dc.contributor.authorQuerol, Xavier
dc.contributor.authorSimonetti, Giulia
dc.contributor.authorTranfo, Giovanna
dc.contributor.authorUbertini, Stefano
dc.contributor.authorValli, Gianluigi
dc.contributor.authorValentini, Sara
dc.contributor.authorVecchi, Roberta
dc.contributor.authorVolpi, Francesca
dc.contributor.authorWeinhold, Kay
dc.contributor.authorWiedensohler, Alfred
dc.contributor.authorZanini, Gabriele
dc.contributor.authorGobbi, Gian Paolo
dc.contributor.authorPetralia, Ettore
dc.date.accessioned2023-01-27T09:31:10Z
dc.date.available2023-01-27T09:31:10Z
dc.date.issued2017
dc.description.abstractIn February 2017 the “Carbonaceous Aerosol in Rome and Environs (CARE)” experiment was carried out in downtown Rome to address the following specific questions: what is the color, size, composition, and toxicity of the carbonaceous aerosol in the Mediterranean urban background area of Rome? The motivation of this experiment is the lack of understanding of what aerosol types are responsible for the severe risks to human health posed by particulate matter (PM) pollution, and how carbonaceous aerosols influence radiative balance. Physicochemical properties of the carbonaceous aerosol were characterised, and relevant toxicological variables assessed. The aerosol characterisation includes: (i) measurements with high time resolution (min to 1–2 h) at a fixed location of black carbon (eBC), elemental carbon (EC), organic carbon (OC), particle number size distribution (0.008–10 μm), major non refractory PM1 components, elemental composition, wavelength-dependent optical properties, and atmospheric turbulence; (ii) 24-h measurements of PM10 and PM2.5 mass concentration, water soluble OC and brown carbon (BrC), and levoglucosan; (iii) mobile measurements of eBC and size distribution around the study area, with computational fluid dynamics modeling; (iv) characterisation of road dust emissions and their EC and OC content. The toxicological assessment includes: (i) preliminary evaluation of the potential impact of ultrafine particles on lung epithelia cells (cultured at the air liquid interface and directly exposed to particles); (ii) assessment of the oxidative stress induced by carbonaceous aerosols; (iii) assessment of particle size dependent number doses deposited in different regions of the human body; (iv) PAHs biomonitoring (from the participants into the mobile measurements). The first experimental results of the CARE experiment are presented in this paper. The objective here is to provide baseline levels of carbonaceous aerosols for Rome, and to address future research directions. First, we found that BC and EC mass concentration in Rome are larger than those measured in similar urban areas across Europe (the urban background mass concentration of eBC in Rome in winter being on average 2.6 ± 2.5 μg · m−3, mean eBC at the peak level hour being 5.2 (95% CI = 5.0–5.5) μg · m−3 ). Then, we discussed significant variations of carbonaceous aerosol properties occurring with time scales of minutes, and questioned on the data averaging period used in current air quality standard for PM10 (24-h). Third, we showed that the oxidative potential induced by aerosol depends on particle size and composition, the effects of toxicity being higher with lower mass concentrations and smaller particle size. Albeit this is a preliminary analysis, findings reinforce the need for an urgent update of existing air quality standards for PM10 and PM2.5 with regard to particle composition and size distribution, and data averaging period. Our results reinforce existing concerns about the toxicity of carbonaceous aerosols, support the existing evidence indicating that particle size distribution and composition may play a role in the generation of this toxicity, and remark the need to consider a shorter averaging period (<1 h) in these new standards.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11109
dc.identifier.urihttp://dx.doi.org/10.34657/10135
dc.language.isoeng
dc.publisherBasel, Switzerland : MDPI AG
dc.relation.doihttps://doi.org/10.3390/atmos8120249
dc.relation.essn2073-4433
dc.relation.ispartofseriesAtmosphere 8 (2017), Nr. 12eng
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectAerosol health effectseng
dc.subjectBlack carboneng
dc.subjectBrown carboneng
dc.subjectCarboanceous aerosoleng
dc.subjectHigh-time resolutioneng
dc.subjectMediterraneaneng
dc.subjectNumber size distributioneng
dc.subjectOptical absorption propertieseng
dc.subjectRomeeng
dc.subjectToxicologyeng
dc.subject.ddc550
dc.titleFirst results of the "Carbonaceous Aerosol in Rome and Environs (CARE)" Experiment: Beyond current standards for PM10eng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleAtmosphere
tib.accessRightsopenAccess
wgl.contributorTROPOS
wgl.subjectGeowissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
atmosphere-08-00249-v5.pdf
Size:
12.76 MB
Format:
Adobe Portable Document Format
Description: