New insights into the structure of nanoporous carbons from NMR, Raman, and pair distribution function analysis

dc.bibliographicCitation.firstPage6848
dc.bibliographicCitation.issue19eng
dc.bibliographicCitation.lastPage6857
dc.bibliographicCitation.volume27
dc.contributor.authorForse, Alexander C.
dc.contributor.authorMerlet, Céline
dc.contributor.authorAllan, Phoebe K.
dc.contributor.authorHumphreys, Elizabeth K.
dc.contributor.authorGriffin, John M.
dc.contributor.authorAslan, Mesut
dc.contributor.authorZeiger, Marco
dc.contributor.authorPresser, Volker
dc.contributor.authorGogotsi, Yury
dc.contributor.authorGrey, Clare P.
dc.date.accessioned2016-03-24T17:36:50Z
dc.date.available2019-06-28T12:38:59Z
dc.date.issued2015
dc.description.abstractThe structural characterization of nanoporous carbons is a challenging task as they generally lack long-range order and can exhibit diverse local structures. Such characterization represents an important step toward understanding and improving the properties and functionality of porous carbons, yet few experimental techniques have been developed for this purpose. Here we demonstrate the application of nuclear magnetic resonance (NMR) spectroscopy and pair distribution function (PDF) analysis as new tools to probe the local structures of porous carbons, alongside more conventional Raman spectroscopy. Together, the PDFs and the Raman spectra allow the local chemical bonding to be probed, with the bonding becoming more ordered for carbide-derived carbons (CDCs) synthesized at higher temperatures. The ring currents induced in the NMR experiment (and thus the observed NMR chemical shifts for adsorbed species) are strongly dependent on the size of the aromatic carbon domains. We exploit this property and use computer simulations to show that the carbon domain size increases with the temperature used in the carbon synthesis. The techniques developed here are applicable to a wide range of porous carbons and offer new insights into the structures of CDCs (conventional and vacuum-annealed) and coconut shell-derived activated carbons.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/1589
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4153
dc.language.isoengeng
dc.publisherWashington D.C. : American Chemical Societyeng
dc.relation.doihttps://doi.org/10.1021/acs.chemmater.5b03216
dc.relation.ispartofseriesChemistry of Materials, Volume 27, Issue 19, Page 6848-6857eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc530eng
dc.titleNew insights into the structure of nanoporous carbons from NMR, Raman, and pair distribution function analysiseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleChemistry of Materialseng
tib.accessRightsopenAccesseng
wgl.contributorINMeng
wgl.subjectPhysikeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
inm201596_pre.pdf
Size:
1.54 MB
Format:
Adobe Portable Document Format
Description:
Collections