Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers

dc.bibliographicCitation.firstPage1721eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.lastPage514eng
dc.bibliographicCitation.volume9eng
dc.contributor.authorZhou, J.
dc.contributor.authorZhu, H.
dc.contributor.authorLiu, T.-H.
dc.contributor.authorSong, Q.
dc.contributor.authorHe, R.
dc.contributor.authorMao, J.
dc.contributor.authorLiu, Z.
dc.contributor.authorRen, W.
dc.contributor.authorLiao, B.
dc.contributor.authorSingh, D.J.
dc.contributor.authorRen, Z.
dc.contributor.authorChen, G.
dc.date.accessioned2020-07-20T06:05:18Z
dc.date.available2020-07-20T06:05:18Z
dc.date.issued2018
dc.description.abstractModern society relies on high charge mobility for efficient energy production and fast information technologies. The power factor of a material-the combination of electrical conductivity and Seebeck coefficient-measures its ability to extract electrical power from temperature differences. Recent advancements in thermoelectric materials have achieved enhanced Seebeck coefficient by manipulating the electronic band structure. However, this approach generally applies at relatively low conductivities, preventing the realization of exceptionally high-power factors. In contrast, half-Heusler semiconductors have been shown to break through that barrier in a way that could not be explained. Here, we show that symmetry-protected orbital interactions can steer electron-acoustic phonon interactions towards high mobility. This high-mobility regime enables large power factors in half-Heuslers, well above the maximum measured values. We anticipate that our understanding will spark new routes to search for better thermoelectric materials, and to discover high electron mobility semiconductors for electronic and photonic applications.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3667
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5038
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/s41467-018-03866-w
dc.relation.ispartofseriesNature Communications 9 (2018), Nr. 1eng
dc.relation.issn2041-1723
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectelectrical conductivityeng
dc.subjectelectrical powereng
dc.subjectelectroneng
dc.subjectenergy efficiencyeng
dc.subjecthigh energy environmenteng
dc.subjecttechnological changeeng
dc.subjecttemperature effecteng
dc.subjectArticleeng
dc.subjectcrystaleng
dc.subjectelectric conductivityeng
dc.subjectelectricityeng
dc.subjectelectron transporteng
dc.subjectenergy yieldeng
dc.subjectmolecular dynamicseng
dc.subjectmolecular interactioneng
dc.subjectphononeng
dc.subject.ddc530eng
dc.titleLarge thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslerseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleNature Communicationseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhou et al 2018, Large thermoelectric power factor from.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format
Description:
Collections