Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential

dc.bibliographicCitation.firstPage602eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.journalTitleNanoscale Research Letterseng
dc.bibliographicCitation.lastPage407eng
dc.bibliographicCitation.volume9eng
dc.contributor.authorLudwig, R.
dc.contributor.authorStapf, M.
dc.contributor.authorDutz, S.
dc.contributor.authorMüller, R.
dc.contributor.authorTeichgräber, U.
dc.contributor.authorHilger, I.
dc.date.accessioned2020-09-29T09:09:41Z
dc.date.available2020-09-29T09:09:41Z
dc.date.issued2014
dc.description.abstractMagnetically induced heating of magnetic nanoparticles (MNP) in an alternating magnetic field (AMF) is a promising minimally invasive tool for localized tumor treatment by sensitizing or killing tumor cells with the help of thermal stress. Therefore, the selection of MNP exhibiting a sufficient heating capacity (specific absorption rate, SAR) to achieve satisfactory temperatures in vivo is necessary. Up to now, the SAR of MNP is mainly determined using ferrofluidic suspensions and may distinctly differ from the SAR in vivo due to immobilization of MNP in tissues and cells. The aim of our investigations was to study the correlation between the SAR and the degree of MNP immobilization in dependence of their physicochemical features.In this study, the included MNP exhibited varying physicochemical properties and were either made up of single cores or multicores. Whereas the single core MNP exhibited a core size of approximately 15 nm, the multicore MNP consisted of multiple smaller single cores (5 to 15 nm) with 65 to 175 nm diameter in total. Furthermore, different MNP coatings, including dimercaptosuccinic acid (DMSA), polyacrylic acid (PAA), polyethylenglycol (PEG), and starch, wereinvestigated. SAR values were determined after the suspension of MNP in water. MNP immobilization in tissues was simulated with 1% agarose gels and 10% polyvinyl alcohol (PVA) hydrogels.The highest SAR values were observed in ferrofluidic suspensions, whereas a strong reduction of the SAR after the immobilization of MNP with PVA was found. Generally, PVA embedment led to a higher immobilization of MNP compared to immobilization in agarose gels. The investigated single core MNP exhibited higher SAR values than the multicore MNP of the same core size within the used magnetic field parameters. Multicore MNP manufactured via different synthesis routes (fluidMAG-D, fluidMAG/12-D) showed different SAR although they exhibited comparable core and hydrodynamic sizes. Additionally, no correlation between ζ-potential and SAR values after immobilization was observed.Our data show that immobilization of MNP, independent of their physicochemical properties, can distinctly affect their SAR. Similar processes are supposed to take place in vivo, particularly when MNP are immobilized in cells and tissues. This aspect should be adequately considered when determining the SAR of MNP for magnetic hyperthermia.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4406
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5777
dc.language.isoengeng
dc.publisherNew York, NY [u.a.] : Springereng
dc.relation.doihttps://doi.org/10.1186/1556-276X-9-602
dc.relation.issn1931-7573
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherImmobilizationeng
dc.subject.otherIntrinsic loss power (ILP)eng
dc.subject.otherMagnetic hyperthermiaeng
dc.subject.otherMagnetic nanoparticles (MNP)eng
dc.subject.otherSpecific absorption rate (SAR)eng
dc.subject.otherGelseng
dc.subject.otherHeatingeng
dc.subject.otherHistologyeng
dc.subject.otherMagnetic fieldseng
dc.subject.otherNanoparticleseng
dc.subject.otherPhysicochemical propertieseng
dc.subject.otherRadioactive waste vitrificationeng
dc.subject.otherTumorseng
dc.subject.otherAlternating magnetic fieldeng
dc.subject.otherDimercaptosuccinic acidseng
dc.subject.otherIntrinsic loss powereng
dc.subject.otherMagnetic hyperthermiaeng
dc.subject.otherMagnetic nanoparticleseng
dc.subject.otherMagnetically-induced heatingeng
dc.subject.otherPoly (vinyl alcohol) (PVA)eng
dc.subject.otherSpecific absorption rateeng
dc.subject.otherNanomagneticseng
dc.titleStructural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potentialeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPHTeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ludwig2014.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
Description:
Collections