Ultrahigh Power Factor in Thermoelectric System Nb0.95M0.05FeSb (M = Hf, Zr, and Ti)

dc.bibliographicCitation.firstPage1800278eng
dc.bibliographicCitation.issue7eng
dc.bibliographicCitation.lastPage30297eng
dc.bibliographicCitation.volume5eng
dc.contributor.authorRen, W.
dc.contributor.authorZhu, H.
dc.contributor.authorZhu, Q.
dc.contributor.authorSaparamadu, U.
dc.contributor.authorHe, R.
dc.contributor.authorLiu, Z.
dc.contributor.authorMao, J.
dc.contributor.authorWang, C.
dc.contributor.authorNielsch, K.
dc.contributor.authorWang, Z.
dc.contributor.authorRen, Z.
dc.date.accessioned2020-07-20T06:05:16Z
dc.date.available2020-07-20T06:05:16Z
dc.date.issued2018
dc.description.abstractConversion efficiency and output power are crucial parameters for thermoelectric power generation that highly rely on figure of merit ZT and power factor (PF), respectively. Therefore, the synergistic optimization of electrical and thermal properties is imperative instead of optimizing just ZT by thermal conductivity reduction or just PF by electron transport enhancement. Here, it is demonstrated that Nb0.95Hf0.05FeSb has not only ultrahigh PF over ≈100 µW cm−1 K−2 at room temperature but also the highest ZT in a material system Nb0.95M0.05FeSb (M = Hf, Zr, Ti). It is found that Hf dopant is capable to simultaneously supply carriers for mobility optimization and introduce atomic disorder for reducing lattice thermal conductivity. As a result, Nb0.95Hf0.05FeSb distinguishes itself from other outstanding NbFeSb-based materials in both the PF and ZT. Additionally, a large output power density of ≈21.6 W cm−2 is achieved based on a single-leg device under a temperature difference of ≈560 K, showing the realistic prospect of the ultrahigh PF for power generation.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3651
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5022
dc.language.isoengeng
dc.publisherChichester : John Wiley and Sons Ltdeng
dc.relation.doihttps://doi.org/10.1002/advs.201800278
dc.relation.ispartofseriesAdvanced Science 5 (2018), 7eng
dc.relation.issn2198-3844
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjecthalf-Heusler compoundseng
dc.subjectpower generationeng
dc.subjectsimultaneous optimizationeng
dc.subjectthermoelectric materialseng
dc.subjectAntimony compoundseng
dc.subjectElectric power factoreng
dc.subjectElectron transport propertieseng
dc.subjectHafnium compoundseng
dc.subjectNiobium compoundseng
dc.subjectPower generationeng
dc.subjectThermal conductivityeng
dc.subjectThermoelectric powereng
dc.subjectThermoelectricityeng
dc.subjectHalf-Heusler compoundeng
dc.subjectLattice thermal conductivityeng
dc.subjectOutput power densityeng
dc.subjectSimultaneous optimizationeng
dc.subjectTemperature differenceseng
dc.subjectThermal conductivity reductionseng
dc.subjectThermo-Electric materialseng
dc.subjectThermoelectric systemseng
dc.subjectIron compoundseng
dc.subject.ddc530eng
dc.titleUltrahigh Power Factor in Thermoelectric System Nb0.95M0.05FeSb (M = Hf, Zr, and Ti)eng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAdvanced Scienceeng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ren et al 2018, Ultrahigh Power Factor in Thermoelectric System.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format
Description:
Collections