Convergence analysis of the FEM coupled with Fourier-mode expansion for the electromagnetic scattering by biperiodic structures

Loading...
Thumbnail Image
Date
2012
Volume
1744
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

Scattering of time-harmonic electromagnetic plane waves by a doubly periodic surface structure in R3 can be simulated by a boundary value problem of the time-harmonic curl-curl equation. For a truncated FEM domain, non-local boundary value conditions are required in order to satisfy the radiation conditions for the upper and lower half spaces. Alternatively to boundary integral formulations, to approximate radiation conditions and absorbing boundary methods, Huber et al. [11] have proposed a coupling method based on an idea of Nitsche. In the case of profile gratings with perfectly conducting substrate, the authors have shown previously that a slightly modified variational equation can be proven to be equivalent to the boundary value problem and to be uniquely solvable. Now it is shown that this result can be used to prove convergence for the FEM coupled by truncated wave mode expansion. This result covers transmission gratings and gratings bounded by additional multi-layer systems.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.