A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Most classical finite element schemes for the (Navier--)Stokes equations are neither pressure-robust, nor are they inf-sup stable on general anisotropic triangulations. A lack of pressure-robustness may lead to large velocity errors, whenever the Stokes momentum balance is dominated by a strong and complicated pressure gradient. It is a consequence of a method, which does not exactly satisfy the divergence constraint. However, inf-sup stable schemes can often be made pressure-robust just by a recent, modified discretization of the exterior forcing term, using H(div)-conforming velocity reconstruction operators. This approach has so far only been analyzed on shape-regular triangulations. The novelty of the present contribution is that the reconstruction approach for the Crouzeix--Raviart method, which has a stable Fortin operator on arbitrary meshes, is combined with results on the interpolation error on anisotropic elements for reconstruction operators of Raviart--Thomas and Brezzi--Douglas--Marini type, generalizing the method to a large class of anisotropic triangulations. Numerical examples confirm the theoretical results in a 2D and a 3D test case.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.