A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2702 | |
dc.contributor.author | Apel, Thomas | |
dc.contributor.author | Kempf, Volker | |
dc.contributor.author | Linke, Alexander | |
dc.contributor.author | Merdon, Christian | |
dc.date.accessioned | 2022-06-30T12:54:13Z | |
dc.date.available | 2022-06-30T12:54:13Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Most classical finite element schemes for the (Navier--)Stokes equations are neither pressure-robust, nor are they inf-sup stable on general anisotropic triangulations. A lack of pressure-robustness may lead to large velocity errors, whenever the Stokes momentum balance is dominated by a strong and complicated pressure gradient. It is a consequence of a method, which does not exactly satisfy the divergence constraint. However, inf-sup stable schemes can often be made pressure-robust just by a recent, modified discretization of the exterior forcing term, using H(div)-conforming velocity reconstruction operators. This approach has so far only been analyzed on shape-regular triangulations. The novelty of the present contribution is that the reconstruction approach for the Crouzeix--Raviart method, which has a stable Fortin operator on arbitrary meshes, is combined with results on the interpolation error on anisotropic elements for reconstruction operators of Raviart--Thomas and Brezzi--Douglas--Marini type, generalizing the method to a large class of anisotropic triangulations. Numerical examples confirm the theoretical results in a 2D and a 3D test case. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9352 | |
dc.identifier.uri | https://doi.org/10.34657/8390 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2702 | |
dc.relation.hasversion | https://doi.org/10.1093/imanum/draa097 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Anisotropic finite elements | eng |
dc.subject.other | incompressible Navier--Stokes equations | eng |
dc.subject.other | divergence-free methods | eng |
dc.subject.other | pressure-robustness | eng |
dc.title | A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 18 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2702.pdf
- Size:
- 508.69 KB
- Format:
- Adobe Portable Document Format
- Description: