On a Group Functor Describing Invariants of Algebraic Surfaces
Loading...
Date
2019
Authors
Volume
8
Issue
Journal
Series Titel
Oberwolfach Preprints (OWP)
Book Title
Publisher
Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach
Link to publishers version
Abstract
Liedtke (2008) has introduced group functors K and K~, which are used in the context of describing certain invariants for complex algebraic surfaces. He proved that these functors are connected to the theory of central extensions and Schur multipliers. In this work we relate K and K~ to a group functor τ arising in the construction of the non-abelian exterior square of a group. In contrast to K~, there exist efficient algorithms for constructing τ, especially for polycyclic groups. Supported by computations with the computer algebra system GAP, we investigate when K(G,3) is a quotient of τ(G), and when τ(G) and K~(G,3) are isomorphic.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.