On a Group Functor Describing Invariants of Algebraic Surfaces

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume8
dc.contributor.authorDietrich, Heiko
dc.contributor.authorMoravec, Primož
dc.date.accessioned2024-10-16T16:43:30Z
dc.date.available2024-10-16T16:43:30Z
dc.date.issued2019
dc.description.abstractLiedtke (2008) has introduced group functors K and K~, which are used in the context of describing certain invariants for complex algebraic surfaces. He proved that these functors are connected to the theory of central extensions and Schur multipliers. In this work we relate K and K~ to a group functor τ arising in the construction of the non-abelian exterior square of a group. In contrast to K~, there exist efficient algorithms for constructing τ, especially for polycyclic groups. Supported by computations with the computer algebra system GAP, we investigate when K(G,3) is a quotient of τ(G), and when τ(G) and K~(G,3) are isomorphic.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16923
dc.identifier.urihttps://doi.org/10.34657/15945
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2019-08
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.otherFinite groups
dc.subject.otherSchur multiplier
dc.subject.otherNon-Abelian exterior square
dc.titleOn a Group Functor Describing Invariants of Algebraic Surfaces
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2019_08.pdf
Size:
397.44 KB
Format:
Adobe Portable Document Format
Description: