Self-stabilization of the equilibrium state in ferroelectric thin films

dc.bibliographicCitation.date2023
dc.bibliographicCitation.firstPage155891
dc.bibliographicCitation.volume613
dc.contributor.authorGaal, Peter
dc.contributor.authorSchmidt, Daniel
dc.contributor.authorKhosla, Mallika
dc.contributor.authorRichter, Carsten
dc.contributor.authorBoesecke, Peter
dc.contributor.authorNovikov, Dmitri
dc.contributor.authorSchmidbauer, Martin
dc.contributor.authorSchwarzkopf, Jutta
dc.date.accessioned2023-02-06T10:22:46Z
dc.date.available2023-02-06T10:22:46Z
dc.date.issued2022
dc.description.abstract(K,Na)NbO3 is a lead-free and sustainable ferroelectric material with electromechanical parameters comparable to Pb(Zr,Ti)O3 (PZT) and other lead-based solid solutions. It is therefore a promising candidate for caloric cooling and energy harvesting applications. Specifically, the structural transition from the low-temperature Mc- to the high-temperature c-phase displays a rich hierarchical order of domains and superdomains, that forms at specific strain conditions. The relevant length scales are few tens of nanometers for the domain and few micrometers for the superdomain size, respectively. Phase-field calculations show that this hierarchical order adds to the total free energy of the solid. Thus, domains and their formation has a strong impact on the functional properties relevant for electrocaloric cooling or energy harvesting applications. However, monitoring the formation of domains and superdomains is difficult and requires both, high spatial and high temporal resolution of the experiment. Synchrotron-based time-resolved X-ray diffraction methods in combination with scanning imaging X-ray microscopy is applied to resolve the local dynamics of the domain morphology with sub-micrometer spatial and nanosecond temporal resolution. In this regime, the material displays a novel self-stabilization mechanism of the domain morphology, which may be a general property of first-order phase transitions.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11304
dc.identifier.urihttp://dx.doi.org/10.34657/10340
dc.language.isoeng
dc.publisherAmsterdam : Elsevier
dc.relation.doihttps://doi.org/10.1016/j.apsusc.2022.155891
dc.relation.ispartofseriesApplied Surface Science 613 (2023)eng
dc.relation.issn0169-4332
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectElectrocaloricseng
dc.subjectMultiferroicseng
dc.subjectPhase transitionseng
dc.subjectPiezoelectricseng
dc.subjectTime-resolved XRDeng
dc.subject.ddc670
dc.subject.ddc530
dc.subject.ddc660
dc.titleSelf-stabilization of the equilibrium state in ferroelectric thin filmseng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleApplied Surface Science
tib.accessRightsopenAccess
wgl.contributorIKZ
wgl.subjectPhysikger
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2-0-S0169433222034195-main.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:
Collections