Systematic tuning of segmented magnetic nanowires into three-dimensional arrays of 'bits'

dc.bibliographicCitation.firstPage37627
dc.bibliographicCitation.issue60
dc.bibliographicCitation.journalTitleRSC Advanceseng
dc.bibliographicCitation.lastPage37635
dc.bibliographicCitation.volume7
dc.contributor.authorBochmann, S.
dc.contributor.authorFernandez-Pacheco, A.
dc.contributor.authorMačković, M.
dc.contributor.authorNeff, A.
dc.contributor.authorSiefermann, K.R.
dc.contributor.authorSpiecker, E.
dc.contributor.authorCowburn, R.P.
dc.contributor.authorBachmann, J.
dc.date.accessioned2023-02-28T10:24:20Z
dc.date.available2023-02-28T10:24:20Z
dc.date.issued2017
dc.description.abstractA method is presented for the preparation of a three-dimensional magnetic data storage material system. The major ingredients are an inert nanoporous matrix prepared by anodization and galvanic plating of magnetic and non-magnetic metals in wire shape inside the cylindrical pores. The individual nanomagnets consist of a nickel-cobalt alloy, the composition of which is tuned systematically by adjusting the electrolytic bath composition at one optimal applied potential. The lowest magnetocrystalline anisotropy is obtained at the composition Ni60Co40, as quantified by superconducting quantum interference device magnetometry. Wires of this composition experience a pinning-free propagation of magnetic domain walls, as determined by single-wire magneto-optical Kerr effect magnetometry. Adding copper into the electrolyte allows one to generate segments of Ni60Co40 separated by non-magnetic copper. The segment structure is apparent in individual nanowires imaged by scanning electron microscopy, UV-photoelectron emission microscopy, and transmission electron microscopy. The single-domain structure of the wire segments is evidenced by magnetic force microscopy.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11569
dc.identifier.urihttp://dx.doi.org/10.34657/10603
dc.language.isoeng
dc.publisherLondon : RSC Publishing
dc.relation.doihttps://doi.org/10.1039/c7ra06734h
dc.relation.essn2046-2069
dc.rights.licenseCC BY 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0
dc.subject.ddc540
dc.subject.otherCoppereng
dc.subject.otherDigital storageeng
dc.subject.otherDomain wallseng
dc.subject.otherElectrolyteseng
dc.subject.otherElectron microscopyeng
dc.subject.otherHigh resolution transmission electron microscopyeng
dc.subject.otherMagnetic domainseng
dc.subject.otherMagnetismeng
dc.subject.otherMagnetocrystalline anisotropyeng
dc.subject.otherMagnetometerseng
dc.subject.otherMagnetometryeng
dc.subject.otherNanowireseng
dc.subject.otherOptical Kerr effecteng
dc.subject.otherQuantum interference deviceseng
dc.subject.otherScanning electron microscopyeng
dc.subject.otherSQUIDseng
dc.subject.otherStructure (composition)eng
dc.subject.otherTransmission electron microscopyeng
dc.subject.otherWireeng
dc.titleSystematic tuning of segmented magnetic nanowires into three-dimensional arrays of 'bits'eng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIOM
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
c7ra06734h.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:

Collections