Memory equations as reduced Markov processes

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2496
dc.contributor.authorStephan, Artur
dc.contributor.authorStephan, Holger
dc.date.accessioned2018-04-16T09:58:00Z
dc.date.available2019-06-28T08:17:19Z
dc.date.issued2018
dc.description.abstractA large class of linear memory differential equations in one dimension, where the evolution depends on the whole history, can be equivalently described as a projection of a Markov process living in a higher dimensional space. Starting with such a memory equation, we give an explicit construction of the corresponding Markov process. From a physical point of view the Markov process can be understood as the change of the type of some quasiparticles along one-way loops. Typically, the arising Markov process does not have the detailed balance property. The method leads to a more realisitc modeling of memory equations. Moreover, it carries over the large number of investigation tools for Markov processes to memory equations, like the calculation of the equilibrium state, the asymptotic behavior and so on. The method can be used for an approximative solution of some degenerate memory equations like delay differential equations.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/2677
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3121
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2496
dc.relation.issn2198-5855eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherMarkov generatoreng
dc.subject.otherdelay equationeng
dc.subject.otherMarkov process without detailed balanceeng
dc.subject.othermodeling memory equationseng
dc.subject.otherexponential kerneleng
dc.subject.otherreservoirseng
dc.subject.otherquasiparticleseng
dc.subject.otherlinear differential equationseng
dc.subject.otherLagrange polynomialeng
dc.subject.otherLaplace transformeng
dc.subject.otherasymptotic behavioreng
dc.subject.othersimplex integralseng
dc.subject.otherintegro-differential equationeng
dc.subject.otherordinary differential equationseng
dc.subject.othermeromorphic functionseng
dc.subject.othernon-autonomouseng
dc.subject.otherfunctional differential equationeng
dc.titleMemory equations as reduced Markov processeseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1018382135.pdf
Size:
315.37 KB
Format:
Adobe Portable Document Format
Description: