Glassy Metal–Organic-Framework-Based Quasi-Solid-State Electrolyte for High-Performance Lithium-Metal Batteries

dc.bibliographicCitation.firstPage2104300eng
dc.bibliographicCitation.issue43eng
dc.bibliographicCitation.journalTitleAdvanced Functional Materialseng
dc.bibliographicCitation.lastPage164eng
dc.bibliographicCitation.volume31eng
dc.contributor.authorJiang, Guangshen
dc.contributor.authorQu, Changzhen
dc.contributor.authorXu, Fei
dc.contributor.authorZhang, En
dc.contributor.authorLu, Qiongqiong
dc.contributor.authorCai, Xiaoru
dc.contributor.authorHausdorf, Steffen
dc.contributor.authorWang, Hongqiang
dc.contributor.authorKaskel, Stefan
dc.date.accessioned2021-11-25T11:14:08Z
dc.date.available2021-11-25T11:14:08Z
dc.date.issued2021
dc.description.abstractEnhancing ionic conductivity of quasi-solid-state electrolytes (QSSEs) is one of the top priorities, while conventional metal–organic frameworks (MOFs) severely impede ion migration due to their abundant grain boundaries. Herein, ZIF-4 glass, a subset of MOFs, is reported as QSSEs (LGZ) for lithium-metal batteries. With lean Li content (0.12 wt%) and solvent amount (19.4 wt%), LGZ can achieve a remarkable ion conductivity of 1.61 × 10−4 S cm−1 at 30 °C, higher than those of crystalline ZIF-4-based QSSEs (LCZ, 8.21 × 10−5 S cm−1) and the reported QSSEs containing high Li contents (0.32–5.4 wt%) and huge plasticizer (30–70 wt%). Even at −56.6 °C, LGZ can still deliver a conductivity of 5.96 × 10−6 S cm−1 (vs 4.51 × 10−7 S cm−1 for LCZ). Owing to the grain boundary-free and isotropic properties of glassy ZIF-4, the facilitated ion conduction enables a homogeneous ion flux, suppressing Li dendrites. When paired with LiFePO4 cathode, LGZ cell demonstrates a prominent cycling capacity of 101 mAh g−1 for 500 cycles at 1 C with the near-utility retention, outperforming LCZ (30.7 mAh g−1) and the explored MOF-/covalent–organic frameworks (COF)-based QSSEs. Hence, MOF glasses will be a potential platform for practical quasi-solid-state batteries in the future. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbHeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7487
dc.identifier.urihttps://doi.org/10.34657/6534
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/adfm.202104300
dc.relation.essn1099-0712
dc.relation.essn1616-3028
dc.rights.licenseCC BY-NC 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/eng
dc.subject.ddc620eng
dc.subject.ddc540eng
dc.subject.ddc530eng
dc.subject.otherlithium-metal batterieseng
dc.subject.othermetal–organic framework glasseng
dc.subject.othermetal–organic frameworkseng
dc.subject.otherquasi-solid-state electrolyteseng
dc.subject.otherZIF-4eng
dc.titleGlassy Metal–Organic-Framework-Based Quasi-Solid-State Electrolyte for High-Performance Lithium-Metal Batterieseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adfm.202104300.pdf
Size:
2.85 MB
Format:
Adobe Portable Document Format
Description: