This item is non-discoverable
Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian
No Thumbnail Available
Date
2010
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Cambridge : arXiv
Link to publishers version
Abstract
We establish sharp energy estimates for some solutions, such as global minimizers, monotone solutions and saddle-shaped solutions, of the fractional nonlinear equation (−Δ)1/2u=f(u) in rn. Our energy estimates hold for every nonlinearity f and are sharp since they are optimal for one-dimensional solutions, that is, for solutions depending only on one Euclidian variable. As a consequence, in dimension n=3, we deduce the one-dimensional symmetry of every global minimizer and of every monotone solution. This result is the analog of a conjecture of De Giorgi on one-dimensional symmetry for the classical equation −Δu=f(u) in rn.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.