Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian

dc.contributor.authorCabre, Xavier
dc.contributor.authorCinti, Eleonora
dc.date.accessioned2016-05-20T17:42:08Z
dc.date.available2019-06-28T08:24:18Z
dc.date.issued2010
dc.description.abstractWe establish sharp energy estimates for some solutions, such as global minimizers, monotone solutions and saddle-shaped solutions, of the fractional nonlinear equation (−Δ)1/2u=f(u) in rn. Our energy estimates hold for every nonlinearity f and are sharp since they are optimal for one-dimensional solutions, that is, for solutions depending only on one Euclidian variable. As a consequence, in dimension n=3, we deduce the one-dimensional symmetry of every global minimizer and of every monotone solution. This result is the analog of a conjecture of De Giorgi on one-dimensional symmetry for the classical equation −Δu=f(u) in rn.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3401
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1004.2866
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherHalf-Laplacianeng
dc.subject.otherenergy estimateseng
dc.subject.othersymmetry propertieseng
dc.subject.otherentire solutionseng
dc.titleEnergy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacianeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections