Mechanistic Insights into the Triplet Sensitized Photochromism of Diarylethenes

Loading...
Thumbnail Image

Date

Volume

26

Issue

34

Journal

Chemistry - A European Journal

Series Titel

Book Title

Publisher

Weinheim : Wiley-VCH

Link to publishers version

Abstract

Operating photoswitchable molecules repetitively and reliably is crucial for most of their applications, in particular in (opto)electronic devices, and related to reversibility and fatigue resistance, which both critically depend on the photoisomerization mechanism defined by the substitution pattern. Two diarylethene photoswitches bearing biacetyl triplet sensitizers either at the periphery or at the core were investigated using both stationary as well as transient UV/Vis absorption spectroscopy ranging from the femtosecond to the microsecond time scale. The diarylethene with two biacetyl moieties at the periphery is switching predominantly from the triplet excited state, giving rise to an enhanced fatigue resistance. In contrast, the diarylethene bearing one diketone at the photoreactive inner carbon atom cyclizes from the singlet excited state and shows significantly higher quantum yields for both cyclization and cycloreversion. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Description

Keywords

Collections

License

CC BY 4.0 Unported