Confined crystals of the smallest phase-change material

dc.bibliographicCitation.firstPage4020eng
dc.bibliographicCitation.issue9eng
dc.bibliographicCitation.journalTitleNano Letterseng
dc.bibliographicCitation.volume13eng
dc.contributor.authorGiusca, C.E.
dc.contributor.authorStolojan, V.
dc.contributor.authorSloan, J.
dc.contributor.authorBörrnert, F.
dc.contributor.authorShiozawa, H.
dc.contributor.authorSader, K.
dc.contributor.authorRümmeli, M.H.
dc.contributor.authorBüchner, B.
dc.contributor.authorSilva, S.R.P.
dc.date.accessioned2020-11-12T07:22:04Z
dc.date.available2020-11-12T07:22:04Z
dc.date.issued2013
dc.description.abstractThe demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4525
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5896
dc.language.isoengeng
dc.publisherWashington, DC : American Chemical Societyeng
dc.relation.doihttps://doi.org/10.1021/nl4010354
dc.relation.issn1530-6984
dc.rights.licenseACS AuthorChoiceeng
dc.rights.urihttps://pubs.acs.org/page/policy/authorchoice_termsofuse.htmleng
dc.subject.ddc620eng
dc.subject.othercarbon nanotubeseng
dc.subject.otherelectron microscopyeng
dc.subject.otherGeTeeng
dc.subject.otherPhase-change materialseng
dc.subject.otherscanning tunneling microscopyeng
dc.subject.otherAmorphous phaseeng
dc.subject.otherCrystalline phaseeng
dc.subject.otherElectronic memoryeng
dc.subject.otherExperimental evidenceeng
dc.subject.otherGeTeeng
dc.subject.otherHigh density memoryeng
dc.subject.otherMemory elementeng
dc.subject.otherMinimum feature sizeseng
dc.subject.otherCarbon nanotubeseng
dc.subject.otherCrystalline materialseng
dc.subject.otherElectron microscopyeng
dc.subject.otherElectronic coolingeng
dc.subject.otherNanowireseng
dc.subject.otherPhase change materialseng
dc.subject.otherPhase change memoryeng
dc.subject.otherScanning tunneling microscopyeng
dc.subject.otherVirtual storageeng
dc.subject.otherAmorphous materialseng
dc.titleConfined crystals of the smallest phase-change materialeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Giusca2013.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
Description: