Discretization scheme for drift-diffusion equations with a generalized Einstein relation

Loading...
Thumbnail Image

Date

Volume

1738

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

Inspired by organic semiconductor models based on hopping transport introducing Gauss-Fermi integrals a nonlinear generalization of the classical Scharfetter-Gummel scheme is derived for the distribution function F(n)=1/(exp(-n)+y). This function provides an approximation of the Fermi-Dirac integrals of different order and restricted argument ranges. The scheme requires the solution of a nonlinear equation per edge and continuity equation to calculate the edge currents. In the current formula the density-dependent diffusion enhancement factor, resulting from the generalized Einstein relation, shows up as a weighting factor. Additionally the current modifies the argument of the Bernoulli functions

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.