Release of Bioactive Molecules from Graphene Oxide-Alginate Hybrid Hydrogels: Effect of Crosslinking Method
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
To investigate the influence of crosslinking methods on the releasing performance of hybrid hydrogels, we synthesized two systems consisting of Graphene oxide (GO) as a functional element and alginate as polymer counterpart by means of ionic gelation (physical method, 𝐻𝑃𝐴−𝐺𝑂) and radical polymerization (chemical method, 𝐻𝐶𝐴−𝐺𝑂). Formulations were optimized to maximize the GO content (2.0 and 1.15% for 𝐻𝑃𝐴−𝐺𝑂 and 𝐻𝐶𝐴−𝐺𝑂, respectively) and Curcumin (CUR) was loaded as a model drug at 2.5, 5.0, and 7.5% (by weight). The physico-chemical characterization confirmed the homogeneous incorporation of GO within the polymer network and the enhanced thermal stability of hybrid vs. blank hydrogels. The determination of swelling profiles showed a higher swelling degree for 𝐻𝐶𝐴−𝐺𝑂 and a marked pH responsivity due to the COOH functionalities. Moreover, the application of external voltages modified the water affinity of 𝐻𝐶𝐴−𝐺𝑂, while they accelerated the degradation of 𝐻𝑃𝐴−𝐺𝑂 due to the disruption of the crosslinking points and the partial dissolution of alginate. The evaluation of release profiles, extensively analysed by the application of semi-empirical mathematical models, showed a sustained release from hybrid hydrogels, and the possibility to modulate the releasing amount and rate by electro-stimulation of 𝐻𝐶𝐴−𝐺𝑂.
