Revealing the Various Electrochemical Behaviors of Sn4P3 Binary Alloy Anodes in Alkali Metal Ion Batteries

dc.bibliographicCitation.firstPage2102047eng
dc.bibliographicCitation.issue31eng
dc.bibliographicCitation.journalTitleAdvanced Functional Materialseng
dc.bibliographicCitation.lastPage159eng
dc.bibliographicCitation.volume31eng
dc.contributor.authorZhou, Junhua
dc.contributor.authorLian, Xueyu
dc.contributor.authorYou, Yizhou
dc.contributor.authorShi, Qitao
dc.contributor.authorLiu, Yu
dc.contributor.authorYang, Xiaoqin
dc.contributor.authorLiu, Lijun
dc.contributor.authorWang, Dan
dc.contributor.authorChoi, Jin-Ho
dc.contributor.authorSun, Jingyu
dc.contributor.authorYang, Ruizhi
dc.contributor.authorRummeli, Mark H.
dc.date.accessioned2021-11-25T10:41:51Z
dc.date.available2021-11-25T10:41:51Z
dc.date.issued2021
dc.description.abstractSn4P3 binary alloy anode has attracted much attention, not only because of the synergistic effect of P and Sn, but also its universal popularity in alkali metal ion batteries (AIBs), including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (PIBs). However, the alkali metal ion (A+) storage and capacity attenuation mechanism of Sn4P3 anodes in AIBs are not well understood. Herein, a combination of ex situ X-ray diffraction, transmission electron microscopy, and density functional theory calculations reveals that the Sn4P3 anode undergoes segregation of Sn and P, followed by the intercalation of A+ in P and then in Sn. In addition, differential electrochemical curves and ex situ XPS results demonstrate that the deep insertion of A+ in P and Sn, especially in P, contributes to the reduction in capacity of AIBs. Serious sodium metal dendrite growth causes further reduction in the capacity of SIBs, while in PIBs it is the unstable solid electrolyte interphase and sluggish dynamics that lead to capacity decay. Not only the failure mechanism, including structural deterioration, unstable SEI, dendrite growth, and sluggish kinetics, but also the modification strategy and systematic analysis method provide theoretical guidance for the development of other alloy-based anode materials. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbHeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7484
dc.identifier.urihttps://doi.org/10.34657/6531
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/adfm.202102047
dc.relation.essn1099-0712
dc.relation.essn1616-3028
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc620eng
dc.subject.ddc540eng
dc.subject.ddc530eng
dc.subject.otheralkali metal ion batterieseng
dc.subject.otherfailure theoryeng
dc.subject.otherion storage mechanismeng
dc.subject.othermodification strategieseng
dc.subject.otherSn 4P 3 binary alloy anodeeng
dc.subject.othersystematic analysis methodseng
dc.titleRevealing the Various Electrochemical Behaviors of Sn4P3 Binary Alloy Anodes in Alkali Metal Ion Batterieseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adfm.202102047.pdf
Size:
3.97 MB
Format:
Adobe Portable Document Format
Description: